DOI QR코드

DOI QR Code

Experimental Study on Thermophoretic Particle Deposition for an Agglomerated and Non-Agglomerated Particles

입자의 형상에 따른 열영동 영향에 대한 실험적 연구

  • 최광열 (한양대학교 대학원 기계공학과) ;
  • 윤진욱 (한양대학교 대학원 기계공학) ;
  • 안강호 (한양대학교 기계공학과)
  • Published : 2004.07.01

Abstract

Agglomerated and non-agglomerated SiO$_2$ particles are synthesized in a furnace by oxidation of TEOS vapor. These polydispersed particles are classified with DMA to extract particles. Then these particles are introduced into a thermal precipitator through the ESP(Electrostatic Precipitator) to investigate the themophoretic particle deposition using CNCs(Condensation Nuclei Counter). The efficiency of themophoretic particle deposition according to agglomerated and non-agglomerated particles in the thermal precipitator has been studied as a function of particle size and TEOS mole concentration using monodisperse particles classified by DMA. The results show that the particle deposition efficiency decreases as TEOS mole concentration increases and particle size increases. Thereffre, it is concluded that the thermophoretic deposition efficiency is dependent of the particle morphology.

Keywords

References

  1. Kern, D. Q. and Seaton, R. E., 1959, 'A Theretical Analysis of Thermal Surface Fouling,' Brit. Chem. Eng., Vol. 4, pp. 258-262
  2. Toda, A., Ohnishi, H., Dobashi, R. and Hirano, T., 1998, 'Experimntal Study on the Relation Between Thermophoreses and Size of Aerosol Particles,' International Journal of Heat Mass Transfer, Vol. 41, No. 17, pp. 2710-2711 https://doi.org/10.1016/S0017-9310(97)00329-3
  3. Whitemore, P. J. and Meisen, A., 1977, 'Estimation of Thermo and Diffusionphoretic Particle Deposition,' The Canadian Journal of Chemical Engineering, Vol. 55, pp. 279-285 https://doi.org/10.1002/cjce.5450550307
  4. Sasse, A. G. B. M., Nazaroff, W. W. and Gadgil, A. J., 1994, 'Particle Filter Based on Thermophoretic Deposition from Natural Convection Flow,' Aerosol Science and Technology, Vol. 20, pp. 227-238 https://doi.org/10.1080/02786829408959679
  5. Derjaguin, B. V. and Yalamov, Y., 1965, :Theory of Thermophoresis of Large Aerosol Particles,' Journal of Colloid Science, Vol. 20, pp. 555-570 https://doi.org/10.1016/0095-8522(65)90035-8
  6. Garcia-Ybarra, P. and Rosner, D. E., 1989, 'Thermophoretic Properties of Nonspherical Particles and Large Molecules,' AIChE Journal, Vol. 35, No. 1, pp. 139-147 https://doi.org/10.1002/aic.690350115
  7. Zheng, F. and Davis, E. J., 2001, 'Thermophoretic Force Measurements of Aggregates of Micro-Spheres,' Journal of Aerosol Science, Vol. 32, pp. 1421-1435 https://doi.org/10.1016/S0021-8502(01)00064-7
  8. Ahn, K. H., Kim, N. H., Lee, J. H. and Bae, G. N., 1996, 'Particle Path and Performance Evaluation of Differential Mobility Analyzer,' Trans. of KSME(B), Vol. 20, No. 6, pp. 2005-2013
  9. Ahn, K. H. and Liu, B. Y. H., 1990, 'Particle Activation and Droplet Growth Processes in Condensation Particle Counter I. Theoretical Back Ground,' Journal of Aerosol Science, Vol. 21, pp. 249-261 https://doi.org/10.1016/0021-8502(90)90008-L
  10. Yoon, J. U., Kim, Y. W. and Ahn, K. H., 2002, 'Corona Ion Assisted Nano-Particle Morphology Control in an Atmospheric Pressure Furnace Reactor,' Trans. of KSME(B), Vol. 26, No. 5, pp. 710-715 https://doi.org/10.3795/KSME-B.2002.26.5.710