• Title/Summary/Keyword: Particle Monitoring

Search Result 344, Processing Time 0.029 seconds

Investigation of the Effect of Wear Particles on the Acoustic Emission Signal (마모 입자가 음향방출신호에 미치는 영향에 관한 연구)

  • Han, Jae-Ho;Shin, Dong-Gap;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.317-322
    • /
    • 2019
  • In spite of progress in tribological research, machine component failure due to friction and wear has been reported frequently. This failure may lead to secondary damage that can cause huge expense for maintenance and repair. To prevent economic loss, it is important to detect and predict the initial failure point. In this sense, various researchers have been tried to develop Condition Monitoring (CM) method using Acoustic Emission (AE) generated while the materials undergo failure. In this study, effect of particles on friction and wear was investigated using the pin-on-plate friction test and AE signal was recorded with a band-width type AE sensor. The experiments were performed in dry and lubricant conditions using steel and glass as specimens. After the experiment, 3D laser microscope image was captured to evaluate the wear behavior quantitatively. The AE signal was analyzed in time-domain and frequency-domain. The amplitude was compared with the frictional results. The results of this study showed that particle generation accelerate wear, generate high magnitude AE signal and change the frequency characteristics of the signal. Also, lubricant condition test results showed low coefficient of friction, low wear rate, and low magnitude of AE signal compared to the dry condition. It is expected that the results of this study will aid in better assessment of wear in CM technology

Characteristics of Background Nanoparticle Concentration in a TiO2 Manufacturing Laboratory (TiO2 제조 실험실에서 나노입자의 배경농도 특징)

  • Park, Seung-Ho;Jung, Jae Hee;Lee, Seung-Bok;Bae, Gwi-Nam;Jie, Hyun Seock;Cho, So-Hye
    • Particle and aerosol research
    • /
    • v.7 no.4
    • /
    • pp.113-121
    • /
    • 2011
  • The aerosol nanoparticles are suspected to be exposed to workers in nanomaterial manufacturing facilities. However, the exposure assessment method has not been established. One of important issues is to characterize background level of nanoparticles in workplaces. In this study, intensive aerosol measurements were made at a $TiO_2$ manufacturing laboratory for five consecutive days in May of 2010. The $TiO_2$ nanoparticles were manufactured by the thermal-condensation process in a heated tube furnace. The particle number size distribution was measured using a scanning mobility particle sizer every 5 min, in order to detect particles ranging from 14.5 to 664 nm in diameter. Total particle number concentration shows a severe diurnal variation irrespective of manufacturing process, which was governed by nanoparticles smaller than 50 nm in diameter. During the background monitoring periods, significant peak concentrations were observed between 2 p.m. and 3 p.m. due to the infiltration of secondary aerosol particles formed by photochemical smog. Although significant increase in nanoparticle concentration was also observed during the manufacturing process twice among three times, these particle peak concentrations were lower than those observed during the background measurement. It is suggested that the investigation of background particle contamination is needed prior to conducting main exposure assessment in nanomaterial manufacturing workplaces or laboratories.

Emission Characteristics of a Passing Two-stroke Scooter using at a Roadside Measurement (도로변 측정을 이용한 2행정 스쿠터의 대기오염물질 배출특성 연구)

  • Woo, Dae-Kwang;Lee, Seung-Bok;Bae, Gwi-Nam;Lim, Cheol-Soo;Kim, Tae-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.663-671
    • /
    • 2011
  • Although a scooter is a convenient transportation means for a short distance traveling with a light package in the congested urban center, it might be one of the significant sources of air pollutants to which many people can easily be exposed during its passing-by. In this paper, we measured concentrations of gases and particles emitted from a scooter at roadside with no other traffic. To understand the characteristics of scooter emissions with respect to driving speed (idling, 30 km/h) at the roadside, total particle number concentration, particle size distribution, average surface area of particles deposited in the alveolar region, and concentrations of black carbon, CO, and $NO_x$ were measured. The concentrations of the particle number, surface area of deposited particles, CO, and $NO_x$ were highly fluctuated in the scooter's idling condition. The trends of particle number concentration, CO, and $NO_x$ generation were similar to one another. When the scooter started to move, all of $NO_x$, CO and particle number concentrations increased and after it passed by at the speed of 30 km/h, the concentration peaks of the particles and gases appeared at the same time. Unimodal size distribution with ~70 and ~93 nm mode diameters was observed for the idling and cruising condition, respectively. From this work, we found that emission from a passing vehicle could be characterized using a roadside monitoring technique.

Vertical Variation of the Particle Flux in the Eastern Tropical Pacific from 2009 to 2010 (동태평양 열대해역에서 2009-2010년 침강입자 플럭스의 수직 변화)

  • Kim, Hyung Jeek;Cho, Sosul;Kim, Dongseon;Kim, Kyeong Hong;Yoo, Chan Min
    • Ocean and Polar Research
    • /
    • v.44 no.3
    • /
    • pp.221-233
    • /
    • 2022
  • A sediment trap had been deployed at 1250 m depth in the Eastern Tropical Pacific (ETP) from September 2009 to July 2010, with the aim of understanding the temporal and vertical variability of particle flux. During the monitoring period, total particle flux varied from 12.4 to 101.0 mg m-2day-1, with the higher fluxes in January-March 2010. Biogenic particle flux varied in phase with the total particle flux. The increase in total particle flux during January-March 2010 was attributed to the enhanced biological production in the surface layer caused by wind-driven mixing in response to the seasonal shifts in the location of the Intertropical convergence zone. The export ratio (e-ratio) was estimated using the particulate organic carbon flux and satellite-derived net primary production data. The estimated e-ratios changed between 0.8% and 2.8% (1.4±0.6% on average). The ratio recorded in the negative phase of Pacific decadal oscillation (PDO) was similar to the previous results obtained from the ETP during the 1992/93 periods in the positive phase of PDO. This suggests that the regime shift of the PDO is not related to the carbon export ratio.

Extraction of Fractal Shape Characteristics of Wear Particles in Lubricant (윤활유 중지 마멸입자의 프랙탈 형상특징 추출 방법)

  • Park, Heung-Sik;Woo, Kyu-Sung;Cho, Yon-Sang;Kim, Dong-Ho;Ye, Gyoo-Heon
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.276-281
    • /
    • 2006
  • The fractal dimension is quantitatively to define the irregular characteristic of the shape in natural. It can be useful in describing morphological characteristics of various wear particles. This paper was undertaken to diagnose failure condition for sliding members in lubrication by fractal dimension. It will be possible to diagnose wear mechanism, friction and damage state of machines through analysis of shape characteristics for wear particle on driving condition by fractal parameters. In this study, the calculating and analyzing methods of fractal dimensions were constructed for the condition monitoring and wear particle analysis in lubricant condition. So, we carried out the Friction and wear test with the ball on disk type tester, and the fractal parameters of wear particle in lubricated conditions were calculated. Fractal parameters were defined as texture fractal dimension ($D_{t}$), structure fractal dimension ($D_{s}$) and total fractal dimension (D).

ESTIMATE OF CHLOROPHYLL CONCENTRATION FROM OCEAN COLOR: UNCERTAINTY ASSOCIATED WITH UNKNOWN BACKSCATTERING

  • Zhang, Xiaodong;Kirilenko, Andrei
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.446-449
    • /
    • 2006
  • It is backscattering of solar radiation by water body that makes ocean color observable from above, either by airplanes or satellites. Given the very low direct contribution to backscattering by phytoplankton cells, it is curious why the retrieval of phytoplankton concentration from remotely observed ocean color is evidently successful. From semianalytical bio-optical models, a dataset is created of spectral absorption, scattering and backscattering coefficients as a function of chlorophyll concentration. Four scenarios are considered, 1) only molecular and no particle scattering, 2) random particle backscattering uncorrelated with chlorophyll concentration, 3) constrained random particle scattering with known backscattering ratio, and 4) constrained random scattering with random backscattering ratio. Scenario 1 only introduces moderate errors of -20% - 90%. And for scenarios 3 and 4, the errors are largely within 30% and 100%. Scenario 2 introduces the largest errors, with the retrieved chlorophyll concentration virtually uncorrelated with the true values, implying the backscattering must somehow be related to the trophic state. The results of the study suggested These 3 cases confirmed that while it is the absorption by phytoplankton that in large part decides the accuracy of chlorophyll concentration retrieval, for the success of monitoring of global ocean primary productivity we have to improve our knowledge on particle backscattering.

  • PDF

Measurement of Particles Generated from PECVD Process using ISPM (ISPM을 이용한 PECVD 공정 내 발생입자 측정 연구)

  • Kim, Dongbin;Mun, Jihun;Kim, HyeongU;Kang, Byung Soo;Yun, JuYoung;Kang, SangWoo;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.11 no.4
    • /
    • pp.93-98
    • /
    • 2015
  • Particles which generated from plasma enhanced chemical vapor deposition (PECVD) during thin film deposition process can affect to the process yield. By using light extinction method, ISPM can measure particles in the large-diameter pipe (${\leq}300mm$). In our research, in-situ particle monitor (ISPM) sensor was installed at the 300 mm diameter exhaust-line to count the particles in each size. In-house flange for mounting the transmitting and receiving parts of ISPM was carefully designed and installed at a certain point of exhaust line where no plasma light affect to the light extinction measurement. Measurement results of trend changes on particle count in each size can confirm that ISPM is suitable for real-time monitoring of vacuum process.

Development of Test Method for Flat Panel Display Life Time Prediction during Atmospheric Particle Exposure (평판디스플레이의 대기중 분진농도에 따른 수명예측 시험방법 개발)

  • Yoo, Dong-Hyun;Lee, Gun-Ho;Choi, Jung-Uk;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.45-48
    • /
    • 2013
  • The electronic device, such as flat panel display (FPD), is very important in our life as a means of communication between humans. Liquid crystal display (LCD), which is categorized as a flat panel display, has been used in many display products, especially in TV industry. An LED TV is composed of several electrical components, such as liquid critical module (LCM), analog to digital convertor (AD), power supplier, and inverter board. These modules are very vulnerable to particulate contamination, and causing malfunction or visibility degradation. In this study, we developed a test method for prediction of LCM's lifetime. The test system consists of carbon particle generation flame, dilution system, test chamber, and particle concentration monitoring instrument. Since the carbon particles are the most abundant in the atmosphere and easily absorb light, soot particles are used as a challenging material for this test. The concentration of generated soot particles is set around 4,000,000 #/cc, which is 400 times higher than that of usual atmospheric particles. Through this experiment, we deduced the relationship between the dust concentration and life time of the test specimen.

Specified Object Tracking in an Environment of Multiple Moving Objects using Particle Filter (파티클 필터를 이용한 다중 객체의 움직임 환경에서 특정 객체의 움직임 추적)

  • Kim, Hyung-Bok;Ko, Kwang-Eun;Kang, Jin-Shig;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.106-111
    • /
    • 2011
  • Video-based detection and tracking of moving objects has been widely used in real-time monitoring systems and a videoconferencing. Also, because object motion tracking can be expanded to Human-computer interface and Human-robot interface, Moving object tracking technology is one of the important key technologies. If we can track a specified object in an environment of multiple moving objects, then there will be a variety of applications. In this paper, we introduce a specified object motion tracking using particle filter. The results of experiments show that particle filter can achieve good performance in single object motion tracking and a specified object motion tracking in an environment of multiple moving objects.

Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality

  • Meng, Xiangpeng;Ryu, Jina;Kim, Bumsik;Ko, Sanghoon
    • Clinical Nutrition Research
    • /
    • v.5 no.3
    • /
    • pp.172-179
    • /
    • 2016
  • Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry.