• Title/Summary/Keyword: Particle Image Processing

Search Result 185, Processing Time 0.031 seconds

Development of Stereoscopic PTV Technique and Performance Tests (Stereoscopic PTV 기법의 개발과 성능비교 연구)

  • Lee Sang-Joon;Yoon Jong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.215-221
    • /
    • 2006
  • A stereoscopic particle tracking velocimetry (SPTV) technique based on the 2-frame hybrid particle tracking velocimetry (PTV) method was developed. The expansion of 2D PTV to SPTV is facilitated by the fact that the PTV method tracks individual particle centroids. To evaluate the performance and measurement accuracy of the present SPTV technique, it was applied to flow images of rigid body translation and synthetic standard images of jet shear flow and impinging jet flow. The data processing routine and measurement uncertainty of the SPTV technique are compared with those of conventional stereoscopic particle image velecimet.y (SPBV). In addition, the centroid translation effect of 2D particle image velocimetry (PIV) is defined and its effect on SPIV measurements is discussed. Compared to the SPIV method, the SPTV technique has inherited merits of concise and precise velocity evaluation procedures and provides better spatial resolution and measurement accuracy.

The Characteristics of the Particle Position Along an Optical Axis in Particle Holography (입자 홀로그래피에서 입자의 광축 방향 위치 특성에 관한 연구)

  • Choo Yeon-Jun;Kang Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.287-297
    • /
    • 2006
  • The Holographic Particle Velocimetry system can be a promising optical tool for the measurements of three dimensional particle velocities. One of inherent limitations of particle holography is the very long depth of field of particle images, which causes considerable difficulty in the determination of particle positions in the optical axis. In this study, we introduced three auto-focusing parameters corresponding to the size of particles, namely, Correlation Coefficient, Sharpness Index, and Depth Intensity to determine the focal plane of a particle along the optical axis. To investigate the suitability of the above parameters, the plane image of dot array screens containing different size of dots was recorded by diffused illumination holography and the positions of each dot in the optical axis were evaluated. In addition, the effect of particle position from the holographic film was examined by changing the distance of the screen from the holographic film. All measurement results verified that the evaluated positions using suggested auto-focusing parameters remain within acceptable range of errors. These research results may provide fundamental information for the development of the holographic velocimetry system based on the automatic image processing.

Velocity Measurement of PIV Using a General Light Source (일반 광원을 이용한 PIV의 속도 측정)

  • 이교태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.559-564
    • /
    • 1999
  • A particle image velocimetry is the representative technique for measuring flow velocities at whole field simultaneously. The present study adopted the PTV method for velocity acquisition in a square enclosure with initially isothermal fluid by using a general lamp-based sheet light source. The enclosure was composed of hot and cold vertical wall and was confined by two horizon-tal adiabatic walls. The drift velocities were measured and the drift was visualized by PTV for a rayleigh number of 5.28{\times}10^8.$ Obtained instant simulataneous velocity vectors show flow pattern and the result of horizontal velocity profile agree well with the numerical result.

  • PDF

A Study on the Gesture Recognition Using the Particle Filter Algorithm (Particle Filter를 이용한 제스처 인식 연구)

  • Lee, Yang-Weon;Kim, Chul-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2032-2038
    • /
    • 2006
  • The recognition of human gestures in image sequences is an important and challenging problem that enables a host of human-computer interaction applications. This paper describes a gesture recognition algorithm based on the particle filters, namely CONDENSATION. The particle filter is more efficient than any other tracking algorithm because the tracking mechanism follows Bayesian estimation rule of conditional probability propagation. We used two models for the evaluation of particle Inter and apply the MATLAB for the preprocessing of the image sequence. But we implement the particle filter using the C++ to get the high speed processing. In the experimental results, it is demonstrated that the proposed algorithm prove to be robust in the cluttered environment.

Multiple Object Tracking with Color-Based Particle Filter for Intelligent Space (공간지능화를 위한 색상기반 파티클 필터를 이용한 다중물체추적)

  • Jin, Tae-Seok;Hashimoto, Hideki
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

  • PDF

A Bone Region Extraction Method based on Snake Algorithm and Particle Filter in CT image (CT 영상에서 스네이크 알고리즘과 파티클 필터를 이용한 뼈 영역 추출 방법)

  • Jung, Sung-Tae;Kim, Young-Un;Kang, Sun-Kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.243-252
    • /
    • 2018
  • In this paper, we propose a bone region extraction method using a snake algorithm and a particle filter in CT image. We extract the bone outline using the snake algorithm, and extract the bone area by moving the particle filter along this outline. If other bones are in close proximity to the bone outline, the snake algorithm may not be able to extract the bone outline completely. At this time, the particle filter extracts the bone area while compensating for the error. In this paper, we compared the proposed method with the conventional morphological processing method. The result is similar when other bones are not close to the bone area to be extracted. However, if other bones are close to each other, The accuracy of the proposed method is higher than the conventional morphological processing method.

Identification of Factors Affecting Errors of Velocity Calculation on Application of MLSPIV and Analysys of its Errors through Labortory Experiment (MLSPIV를 이용한 유속산정시 오차요인 규명 및 실내실험을 통한 유속산정오차 분석)

  • Kim, Young-Sung;Lee, Hyun-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.153-165
    • /
    • 2010
  • Large-Scale Particle Image Velocimetry (LSPIV) is an extension of particle image velocimetry (PIV) for measurement of flows spanning large areas in laboratory or field conditions. LSPIV is composed of six elements - seeding, illumination, recording, image transformation, image processing, postprocessing - based on PIV. Possible error elements at each step of Mobile LSPIV (MLSPIV), which is a mobile version of LSPIV, in field applications are identified and summarized the effect of the errors which were quantified in the previous studies. The total number of elemental errors is 27, and five error sources were evaluated previously, seven elemental errors are not effective to the current MLSPIV system. Among 15 elemental errors, four errors - sampling time, image resolution, tracer, and wind - are investigated through an experiment at a laboratory to figure out how those errors affect to velocity calculation. The analysis to figure out the effect of the number of images used for image processing on the velocity calculation error shows that if over 50 images or more are used, the error due to it goes below 1 %. The effect of the image resolution on velocity calculation was investigated through various image resolution using digital camera. Low resolution image set made 3 % of velocity calculation error comparing with high resolution image set as a reference. For the effect of tracers and wind, the wind effect on tracer is decreasing remarkably with increasing the flume bulk velocity. To minimize the velocity evaluation error due to wind, tracers with high specific gravity is favorable.

A Study on the Gesture Recognition Based on the Particle Filter Using CONDENSATION Algorithm (CONDENSATION 알고리즘을 이용한 입자필터 기반 동작 인식 연구)

  • Lee, Yang-Weon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.584-591
    • /
    • 2007
  • The recognition of human gestures in image sequences is an important and challenging problem that enables a host of human-computer interaction applications. This paper describes a gesture recognition algorithm based on the particle filters, namely CONDENSATION. The particle filter is more efficient than any other tracking algorithm because the tracking mechanism follows Bayesian estimation rule of conditional probability propagation. We used two models for the evaluation of particle filter and apply the MAILAB for the preprocessing of the image sequence. But we implement the particle filter using the C++ to get the high speed processing. In the experimental results, it is demonstrated that the proposed algorithm prove to be robust in the cluttered environment.

Nondestructive Measurement of the Coating Thickness in the Simulated TRISO-Coated Fuel Particle Using Micro-Focus X-ray Radiography (마이크로포커스 X-선 투과 영상을 이용한 모의 TRISO 핵연료 입자 코팅 층 두께 비파괴 측정)

  • Kim, Woong-Ki;Lee, Young-Woo;Park, Ji-Yeon;Park, Jung-Byung;Ra, Sung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.69-76
    • /
    • 2006
  • TRISO(tri-isotropic)-coated fuel particle technology is utilized owing to its higher stability at a high temperature and Its efficient retention capability for fission products In the HTGR(high temperature gas-reeled reactor). The typical spherical TRISO fuel panicle with a diameter of about 1mm is composed of a nuclear fuel kernel and outer coating layers. The outer coating layers consist of a buffer PyC(pyrolytic carbon) layer, Inner PyC(1-PyC) layer, SiC layer, and outer PyC(O-PyC) layer Most of the Inspection Items for the TRTSO-coated fuel particle depend on destructive methods. The coating thickness of the TRISO fuel particle can be nondestructively measured by the X-ray radiography without generating radioactive wastel. In this study, the coaling thickness for the simulated TRISO-coated fuel particle with $ZrO_2$ kernel Instead of $%UO_2$ kernel was measured by using micro-focus X-ray radiography with micro-focus X-ray generator and flat panel detector The radiographic image was also enhanced by image processing technique to acquire clear boundary lines between coating layers. The coaling thickness wat effectively measured by applying the micro-focus X-ray radiography The inspection process for the TRISO-coated fuel particles will be improved by the developed micro-focus X-ray radiography and digital image processing technology.

Distribution Characteristics of Wear Particles from Material of Machine Elements in Lubricant condition (윤활조건에 따른 기계부품용 소재에서 발생된 마멸입자의 분포 특성)

  • Cho, Yon-Sang;Jun, Sung-Jae;Kim, Young-Hee;Park, Heung-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1607-1612
    • /
    • 2007
  • It necessarily follows that wear particles are generated through a friction and wear in a mechanical moving system. The wear particles are relative to the failure and the life of machine elements directly. To analyze the wear particle, its shape characteristics were calculated quantitative values such as diameter, roundness and fractal parameters by digital image processing. In this study, the histograms of shape parameters of wear particles were used for the purpose of analyzing the distribution of wear particles in various conditions. We consider that the histogram of shape parameter can be effectively represented to study a wear mechanism.

  • PDF