• 제목/요약/키워드: Particle Formation

검색결과 1,118건 처리시간 0.031초

On the usefulness of discrete element computer modeling of particle packing for material characterization in concrete technology

  • Stroeven, P.;Hu, J.;Stroeven, M.
    • Computers and Concrete
    • /
    • 제6권2호
    • /
    • pp.133-153
    • /
    • 2009
  • Discrete element modeling (DEM) in concrete technology is concerned with design and use of models that constitute a schematization of reality with operational potentials. This paper discusses the material science principles governing the design of DEM systems and evaluates the consequences for their operational potentials. It surveys the two families in physical discrete element modeling in concrete technology, only touching upon probabilistic DEM concepts as alternatives. Many common DEM systems are based on random sequential addition (RSA) procedures; their operational potentials are limited to low configuration-sensitivity features of material structure, underlying material performance characteristics of low structure-sensitivity. The second family of DEM systems employs concurrent algorithms, involving particle interaction mechanisms. Static and dynamic solutions are realized to solve particle overlap. This second family offers a far more realistic schematization of reality as to particle configuration. The operational potentials of this family involve valid approaches to structure-sensitive mechanical or durability properties. Illustrative 2D examples of fresh cement particle packing and pore formation during maturation are elaborated to demonstrate this. Mainstream fields of present day and expected application of DEM are sketched. Violation of the scientific knowledge of to day underlying these operational potentials will give rise to unreliable solutions.

동층류 축대칭 확산화염내의 화염구조 및 매연입자 분포의 예측 (Predictions on the Flame Structure and Soot Distribution in the Coflowing Laminar Diffusion Flames)

  • 이정기;김상수
    • 대한기계학회논문집
    • /
    • 제16권8호
    • /
    • pp.1583-1594
    • /
    • 1992
  • 본 연구에서는 동층류 축대칭 확산화염에서 이전까지의 화염해석 방법들을 면 밀히 고찰하여 층류 확산화염 방식의 연소문제를 해결하는데 있어서 접근이 용이하고 타당성을 가지는 화염해석 방법을 찾아내는데 있으며 매연 입자에 관한 생성및 산화모 델을 총체적으로 연결하여 실험결과와의 비교를 통해 적절한 모델인수를 결정하며 복 사효과와 열영동효과를 고려하여 화염해석과 화염내의 매연입자의 분포를 예측하는데 있다.

INFLUENCE OF MECHANICAL ALLOYING ATMOSPHERES ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 15Cr ODS STEELS

  • Noh, Sanghoon;Choi, Byoung-Kwon;Kang, Suk Hoon;Kim, Tae Kyu
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.857-862
    • /
    • 2014
  • Mechanical alloying under various gas atmospheres such as Ar, an Ar-$H_2$ mixture, and He gases were carried out, and its effects on the powder properties, microstructure and mechanical properties of ODS ferritic steels were investigated. Hot isostatic pressing and hot rolling processes were employed to consolidate the ODS steel plates. While the mechanical alloyed powder in He had a high oxygen concentration, a milling in Ar showed fine particle diameters with comparably low oxygen concentration. The microstructural observation revealed that low oxygen concentration contributed to the formation of fine grains and homogeneous oxide particle distribution by the Y-Ti-O complex oxides. A milling in Ar was sufficient to lower the oxygen concentration, and this led a high tensile strength and fracture elongation at a high temperature. It is concluded that the mechanical alloying atmosphere affects oxygen concentration as well as powder particle properties. This leads to a homogeneous grain and oxide particle distribution with excellent creep strength at high temperature.

Emulsion법에 의한 실리카 분말의 합성에서 반응조건이 입자의 형성에 미치는 영향 (The Effect of Reaction Condition on Particle Formation in the Synthesis of Silica Powder Using Emulsion)

  • 이상근;장윤식;문병영;강범수;박희찬
    • 한국재료학회지
    • /
    • 제15권11호
    • /
    • pp.717-721
    • /
    • 2005
  • Silica powders were synthesized using emulsion solution containing water, nonionic surfactant of Triton N-57, and cyclohexane. Silica powders were prepared at low cost using inexpensive starting material of sodium silicate and ammonium sulfate. Morphology, size and size distribution were observed and determined using SEM. The powder was identified as silica by FT-IR and XRD analysis. Particle size and size distributions were affected by concentration of reactants, reaction time, and concentration of surfactant. Particle size were increased with increasing concentration of reactants and particles became dense with increasing reaction time. As R value increased, tile particle size was increased, reached a certain value and then decreased again. The silica powders synthesized under optimum condition were spherical in shape, $0.8{\mu}m$ in average particle size, narrow in particles size distribution, and well dispersed.

동 테르밋 용접 특성 향상을 위한 폐 산화동 분말 입도 제어 연구 (Controlling Particle Size of Recycled Copper Oxide Powder for Copper Thermite Welding Characteristics)

  • 이한성;김민수;안병민
    • 한국분말재료학회지
    • /
    • 제30권4호
    • /
    • pp.332-338
    • /
    • 2023
  • Thermite welding is an exceptional process that does not require additional energy supplies, resulting in welded joints that exhibit mechanical properties and conductivity equivalent to those of the parent materials. The global adoption of thermite welding is growing across various industries. However, in Korea, limited research is being conducted on the core technology of thermite welding. Currently, domestic production of thermite powder in Korea involves recycling copper oxide (CuO). Unfortunately, controlling the particle size of waste CuO poses challenges, leading to the unwanted formation of pores and cracks during thermite welding. In this study, we investigate the influence of powder particle size on thermite welding in the production of Cu-thermite powder using waste CuO. We conduct the ball milling process for 0.5-24 h using recycled CuO. The evolution of the powder shape and size is analyzed using particle size analysis and scanning electron microscopy (SEM). Furthermore, we examine the thermal reaction characteristics through differential scanning calorimetry. Additionally, the microstructures of the welded samples are observed using optical microscopy and SEM to evaluate the impact of powder particle size on weldability. Lastly, hardness measurements are performed to assess the strengths of the welded materials.

COSMIC RAYS AND GAMMA-RAYS IN LARGE-SCALE STRUCTURE

  • INOUE SUSUMU;NAGASHIMA MASAHIRO;SUZUKI TAKERU K.;AOKI WAKO
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.447-454
    • /
    • 2004
  • During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of $^6Li$ by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.

아세틸렌/공기 비예혼합 난류 제트화염의 Soot 생성에 대한 수치해석 (Numerical Analysis for the Soot Formation Processes in Acetylene-Air Nonpremixed Turbulent Jet Flame)

  • 김후중;김용모;윤명원
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.80-89
    • /
    • 2002
  • The flame structure and soot formation in Acetylene-Air nonpremixed jet flame are numerically analyzed. We employed two variable approach to investigate the soot formation and oxidation processes. The present soot reaction mechanism involves nucleation, surface growth, particle coagulation, and oxidation steps. The gas phase chemistry and the soot nucleation, surface growth reactions are coupled by assuming that the nucleation and soot mass growth has the certain relationship with the concentration of pyrene and acetylene. We also employed laminar flamelet model to calculate the thermo-chemical properties and the proper soot source terms from the information of detailed chemical kinetic model. The numerical and physical model used in this study successfully predict the essential features of the combustion processes and soot formation characteristics in the reaction flow field.

A study of sub-galactic scale structure formation with a cosmological hydro code

  • 신지혜;김주한;김성수;윤석진
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • To study the formation and evolution of sub-galactic scale structures, we have added SPH (Smoothed Particle Hydrodynamics) method into an existing cosmological PMTree code, GOTPM. To follow the evolution of gas particles, we consider heating/cooling processes, star formation, and energy & metal feedback by supernova explosion. We have performed various tests for the new code and found that the results reproduce observed quantities or follow the known analytic solutions. We present a test simulation of isolated disk galaxy with a focus on whether the star formation reproduces the observed features.

  • PDF

화상상관법을 이용한 증발 디젤분무의 구조해석 (Analysis on the Structure of Evaporative Diesel Spray by Using PIV Technique)

  • 염정국;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.74-79
    • /
    • 2004
  • The effects of change in injection pressure on spray structure have been investigated in high temperature and pressure field. To analyze the structure of evaporative diesel spray is important in speculation of mixture formation process. Also emissions of diesel engines can be controlled by the analyzed results. Therefore, this study examines the evaporating spray structure by using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 72 MPa to 112 MPa with a high pressure injection system(ECD-U2). The PIV(Particle Image Velocimetry) technique was used to capture flow variation of the evaporative diesel spray. A study on the mixture formation process of diesel spray was executed by the results of flow analysis in this study. Consequentially the large-scale vortex flow could be found in downstream spray and the formed vortex governs the mixture formation process in diesel spray.

오일의 종류 및 required HLB가 나노에멀젼 형성에 미치는 영향 (Type of Oil and Effect of Required HLB on Nanoemulsion Formation)

  • 이다연;황혜윤;임수민;장혜인
    • 한국응용과학기술학회지
    • /
    • 제40권6호
    • /
    • pp.1533-1546
    • /
    • 2023
  • 나노에멀젼이란 20 ~ 200nm 정도의 입자 크기를 갖는 에멀젼으로 투명하거나 반투명한 외관을 가지며, 작은 입자 사이즈로 유효물질의 피부 투과율을 향상시킬 수 있다는 장점이 있어 다양한 분야에서 응용되고 있다. 본 연구에서는 오일의 required HLB와 종류가 나노에멀젼 형성에 미치는 영향에 대하여 알아보기 위해 required HLB가 다른 오일 8가지, 종류가 다른 16가지의 오일을 선정하여 연구를 진행하였다. 이때 사용한 계면활성제로는 Polysorbate 60 (HLB 14.9), Sorbitan stearate (HLB 4.7), PEG-60 hydrogenated castor oil (HLB 14.0)이며 Polysorbate 60과 Sorbitan stearate를 혼합하여 HLB 14.0으로 고정한 것과 Polysorbate 60, PEG-60 hydrogenated castor oil을 각각 사용하여 제조하였다. 오일의 종류에 따라 나노에멀젼 형성이 다르게 나타났으며 에스터계 구조를 가지는 오일이 비교적 우수한 나노에멀젼 형성 능력을 보여주었는데, 특히 Cetyl ethylhexanoin이 평균 40nm 이하의 작은 사이즈로 생성된 후 큰 변화없이 안정한 나노에멀젼이 형성된 것을 확인할 수 있었다. 또한, Polysorbate 60과 Sorbitan stearate를 혼합하여 사용하는 것이 PEG-60 hydrogenated castor oil 혹은 Polysorbate 60 각각 단독으로 사용하는 것보다 우수한 나노에멀젼 형성 능력을 가지는 것으로 나타났다.