• 제목/요약/키워드: Particle Deposition Velocity

검색결과 64건 처리시간 0.022초

전기장이 형성된 관성 충돌기에서 대전 입자의 거동과 부착 특성에 대한 연구 (Pre-Charged Particle Deposition in an Impactor subjected to an Electric Field)

  • 박형호;김상수
    • 대한기계학회논문집B
    • /
    • 제23권3호
    • /
    • pp.299-310
    • /
    • 1999
  • Effect of electrostatic and inertial forces on the pre-charged particle deposition was theoretically and experimentally studied by introducing the inertia impactor subjected to an electric field. To derive the analytic solution, we assumed that a flow was an ideal stagnation flow, a particle had saturation charges, and the electric field within the test section was uniform. On the other hand, $Al_2O_3$ particle groups were used as the test particles, which mean sizes were $1{\mu}m$, $3{\mu}m$, and $5{\mu}m$. To measure the deposition efficiency, the light scattering method was used. The results showed that the deposition efficiency was minimized at a certain nozzle velocity as increasing the nozzle velocity, only if the electric force was applied. As the electric field strength increased, $Stk_{50}{^{1/2}}$ was decreased, and its decreasing rate was reduced with increasing the flow velocity. Moreover the existence of electric field was against the cut-off performance of the inertia impactor.

정전효과가 있는 가열 수평웨이퍼로의 입자침착에 관한 해석 (Analysis on particle deposition onto a heated, horizontal free-standing wafer with electrostatic effect)

  • 유경훈;오명도;명현국
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1284-1293
    • /
    • 1997
  • The electrostatic effect on particle deposition onto a heated, Horizontal free-standing wafer surface was investigated numerically. The deposition mechanisms considered were convection, Brownian and turbulent diffusion, sedimentation, thermophoresis and electrostatic force. The electric charge on particle needed to calculate the electrostatic migration velocity induced by the local electric field was assumed to be the Boltzmann equilibrium charge. The electrostatic forces acted upon the particle included the Coulombic, image, dielectrophoretic and dipole-dipole forces based on the assumption that the particle and wafer surface are conducting. The electric potential distribution needed to calculate the local electric field around the wafer was calculated from the Laplace equation. The averaged and local deposition velocities were obtained for a temperature difference of 0-10 K and an applied voltage of 0-1000 v.The numerical results were then compared with those of the present suggested approximate model and the available experimental data. The comparison showed relatively good agreement between them.

Gas/Particle Level and Dry Deposition Flux of Atmospheric PCBs

  • Yeo, Hyun-Gu;Park, Ki-Chul
    • 한국환경보건학회지
    • /
    • 제29권4호
    • /
    • pp.10-16
    • /
    • 2003
  • Atmospheric samples were conducted from September 2001 to July 2002 with GPS-l PUF sampler in rural site to concentration distributions of gas/particle PCBs and to calculate dry deposition flux of PCBs. $\Sigma$PCBs concentrations of gas/particle PCBs were 59.29$\pm$48.83, 6.56$\pm$6.59 pg/㎥, respectively. Gas contribution (%) of total PCBs (gas + particle) was 90% which existed gas phase in the atmosphere. The particle contribution (%) of PCB congeners increased relatively more of the less volatile congeners with the highest chlorine number. The correlation coefficients (r) between total PCBs and temperature ($^{\circ}C$) showed negative correlation in - 0.62 (p<0.0l) for particle phase, positive correlation in 0.63 (p<0.01) for gas phase. In other word, particle phase PCBs is enriched in colder weather which could be due to greater in corporation of condensed gas phase at low temperature. The calculated dry deposition of total PCBs (gas + particle) was 0.008, 0.008 $\mu\textrm{g}$ $m^{-2}$ da $y^{-l}$ which showed maximum dry deposition flux in December, minimum data in July Bs in the atmosphere. The calculated dry deposition fluxes of total PCBs were influenced by particle phase PCBs even though PCBs in the atmosphere were present primarily in the gas phase.e.

진공환경에서 수평 웨이퍼 표면으로의 입자침착 해석 (Analysis on Particle Deposition onto a Horizontal Semiconductor Wafer at Vacuum Environment)

  • 유경훈
    • 대한기계학회논문집B
    • /
    • 제26권12호
    • /
    • pp.1715-1721
    • /
    • 2002
  • Numerical analysis was conducted to characterize the gas flow field and particle deposition on a horizontal freestanding semiconductor wafer under the laminar flow field at vacuum environment. In order to calculate the properties of gas, the gas was assumed to obey the ideal gas law. The particle transport mechanisms considered were convection, Brownian diffusion and gravitational settling. The averaged particle deposition velocities and their radial distributions fnr the upper surface of the wafer were calculated from the particle concentration equation in an Eulerian frame of reference for system pressures of 1 mbar~1 atm and particle sizes of 2nm~10$^4$ nm(10 ${\mu}{\textrm}{m}$). It was observed that as the system pressure decreases, the boundary layer of gas flow becomes thicker and the deposition velocities are increased over the whole range of particle size. One thing to be noted here is that the deposition velocities are increased in the diffusion dominant particle size range with decreasing system pressure, whereas the thickness of the boundary layer is larger. This contradiction is attributed to the increase of particle mechanical mobility and the consequent increase of Brownian diffusion with decreasing the system pressure. The present numerical results showed good agreement with the results of the approximate model and the available experimental data.

열영동력이 수평 웨이퍼상의 입자침착에 미치는 영향 (Thermophoretic Effect on Particle Deposition Toward a Horizontal Wafer)

  • 배귀남;박승오;이춘식
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.175-183
    • /
    • 1994
  • To investigate thermophoretic effect on particle deposition, average deposition velocity toward a horizontal wafer surface in vertical airflow is measured keeping the wafer surface temperature different from the surrounding air temperature. In the present measurement, the temperature difference is maintained in the range from -10 to $4^{\circ}$ C Polystyrene latex (PSL) spheres of diameter between 0.3 and 0.8 .mu.m are used for the experiment. The number of particles deposited on a wafer surface is estimated from the measurements using a wafer surface scanner (PMS SAS-3600). Experimental data are compared with prediction model results.

정체점 입자유동에서 복사열전달을 고려한 열영동 입자부착 연구 (A study of thermophoretic particle deposition in a particle laden stagnation flow including the effect of radiative heat transfer)

  • 정창훈;이공훈;최만수;이준식
    • 대한기계학회논문집B
    • /
    • 제20권5호
    • /
    • pp.1624-1638
    • /
    • 1996
  • A study of thermophoretic particle deposition has been carried out for a particle laden stagnation flow considering the effect of radiative heat transfer. Energy, concentration and radiative transfer equations are all coupled and have been solved iteratively assuming that absorption and scattering coefficients were proportional to the local concentration of particles. Radiative heat transfer was shown to strongly affect the profiles of temperature and particle concentration. e. g., radiation increases the thickness of thermal boundary layer and wall temperature gradients significantly. As the wall temperature gradients increase, the particle concentration at the wall decreases due to thermophoretic particle transport. The deposition rate that is thermophoretic velocity times particle concentration at the wall decreases as the effects of radiation increases. The effects of optical thickness, conduction to radiation parameter and wall emissivity have been determined. The effects of anisotropic scattering are shown as insignificant.

Particle Deposition, PD Process - New Potential in Material Processing -

  • Fukumoto, Masahiro
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.47-48
    • /
    • 2006
  • Oridinal thermal spray process has developed into two ways, namely, temperature dominated represented by plasma spraying, and velocity dominated represented by HVOF. It is common for both that the particle materials sprayed are basically in melted or half melted condition. New process has developed recently, that is, Cold Spray and Aerosol Deposition. Particle's heating is limited in CS lower than half of the material's melting point. Moreover, exactly no heating is loaded in AD process. Through the investigation on common feature for these three spraying processes, potential of new material process - Particle Deposition, PD - is considered and proposed.

  • PDF

미소중력환경에서의 고체벽면근방 층류확산염내 매연입자의 열영동 부착 (Thermophoretic deposition of soot particles in laminar diffusion flame along a solid wall in microgravity)

  • 최재혁;후지타오사무;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.19-24
    • /
    • 2007
  • The deposition behavior of soot particles in a diffusion flame along a solid wall was examined experimentally by getting rid of the effect of natural convection utilizing microgravity environment. The microgravity environment was realized by using a drop tower facility. The fuel for the flame was an ethylene ($C_2H_4$) and the surrounding oxygen concentration 35% with the surrounding air velocity of $V_a$=2.5, 5, and 10 cm/s. Laser extinction method was adopted to measure the soot volume fraction distribution between the flame and burner wall. The results show that observation of soot deposition in normal flame was difficult from buoyancy and the relative position of flame and solid surface changes with time. The soot particle distribution region moves closer to the surface of the wall as the surrounding air velocity is increased. And the experiments determined the trace of the maximum soot concentration line. It was found that the distance between soot line and flame line is around 5 mm. That is, the soot particle near the flame zone tends to move away from flame zone because of thermophoretic force and to concentrate at a certain narrow area inside of the flame, finally, to adhere the solid wall.

  • PDF

표면 코팅 입자에 의한 석탄화력 발전용 보일러 파울링 수치적 연구 (Computational Study of Fouling Deposits Due to Surface-Coated Particles in Coal-Fired Power Utility Boilers)

  • 이병은;유갑종;신세현;권순범
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.474-481
    • /
    • 2002
  • Fouling deposits due to surface-coated particles have been calculated using CFD techniques. The sticking probabilities of the surface-coated particles are also evaluated on the basis of an energy balance. The sticking probabilities of the deposit surface are also included in the prediction of the deposition occurring through the multiple impaction of particles with the deposit surface. The sticking probability of an impacting particle is expressed in terms of such parameters as particle viscosity, surface tension, impact velocity, impact angle and the thickness of the sticky layer on a particle. Particulate behavior around a tube in cross flow was studied using the Lagrangian approach. Three important parameters i.e. impact velocity, impact angle, and particulate concentration, were used in the prediction of deposition rate. The computational predictions were found to be in good agreement with the experimental data.

분위기유속에 따른 확산화염내 매연거동파악 (Observation of Soot Behavior in Diffusion Flame according to Surrounding Air Velocity)

  • 최재혁;박원석;윤석훈;오철;김명환
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.254-255
    • /
    • 2005
  • The effect of surrounding air velocity on the soot deposition process from a diffusion flame to a solid wall was investigated in a microgravity environment to attain in-situ observations of the process. An ethylene($C_2H_4$) diffusion flame was formed around a cylindrical rod burner in surrounding air velocity of $v_{air}$=2.5, 5, and 10 cm/s with oxygen concentration of 35 % and wall temperature of 300 K. Laser extinction was adopted to determine the soot volume fraction distribution between the flame and burner wall. The experimental results show that the soot particle distribution region moves closer to the surface of the wall with increasing surrounding air velocity. A numerical simulation was also performed to understand the motion of soot particles in the flame and the characteristics of the soot deposition to the wall. The results successfully predicted the differences in the motion of soot particles by different surrounding air velocity near the burner surface and are in good agreement with observed soot behavior in microgravity. A comparison of the calculations and experimental results led to the conclusion that a consideration of the thermophoretic effect is essential to understand the soot deposition on walls.

  • PDF