• Title/Summary/Keyword: Particle Collection

Search Result 307, Processing Time 0.028 seconds

Numerical Study on the Flow Characteristics of Uniflow Cyclone (단방향 사이클론의 유동 특성에 관한 수치해석적 연구)

  • Yan, Zheng-Qi;Zhang, Shuo;Shin, Weon Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.77-83
    • /
    • 2020
  • A uniflow cyclone has simple structure with a single channel in one direction. The one directional particle removal enables the uniflow cyclone to have compact size and low pressure drop. However, it has low collection efficiency compared to conventional cyclones. In this study, the effect of primary geometry on the performance of a uniflow cyclone with swirl vane is numerically investigated for the design of high performance uniflow cyclone. It is found that as the vortex finder diameter is increased, the pressure drop and the collection efficiency are decreased. Also, the same trend is predicted when the vortex finder height is increased. The best collection efficiency is predicted to be obtained when the vortex finder height is equal to the diameter of a cyclone. Reducing the body height by half will increase the pressure drop by 41%. When the body height is decreased, the collection efficiency is first increased and then decreased. The best collection efficiency is obtained when the body height is 4~5 times the cyclone diameter. Overall, the particle collection efficiency is highest when the Dν/D is equal to 0.3. But, the pressure drop is as high as 1592 Pa. Considering both collection efficiency and pressure drop, the best design is when Dν/D, Hν/D, and Hb/D are equal to 0.5, 1, and 5, respectively.

A study on the Polymer surface treatment of GF-filter bag for collection of fine Particle like carbon black (카본블랙류 미세입자 포집을 위한 유리섬유 필터백의 고분자 표면처리에 관한 연구)

  • Lee, B.;Choi, H.L.;Moon, C.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.55-59
    • /
    • 2008
  • In this paper, we have investigated on collection efficiency of fine particle of glass fiber-filter bag according to the surface treatment. The solution consisted of polytetrafluoroethylene(teflon), graphite powder, silicon resin and water was used as a basic surface treatment agent. Tensile strength of glass filter-bag increased with up to 3hrs and then decreased with surface treatment time. Tensile strength and initial modulus of the glass fiber-filter bag treated by iodine after basic surface treatment for 3hrs were lower than those of basic surface treatment for 3hrs, however collection efficiency and fracture strain were higher than those of basic surface treatment for 3hrs. Glass fiber-filter bag with lower initial modulus and more strain will be extend the durable period and the one treated by iodine after basic surface treatment 3or 3hrs is expected high collection efficiency of fine particle. This method makes it possible to manufacture glass fiber-filter bag of the optimum condition.

  • PDF

Classification of Nanoparticles by Inertial/Diffusion Filter (관성/확산필터를 이용한 나노입자의 분류기술 연구)

  • Kim, Yonggu;Lee, Sangyul;Kim, Hannah;Noh, Hakjae;Bong, Choonkeun;Kim, Daesung
    • Particle and aerosol research
    • /
    • v.11 no.2
    • /
    • pp.29-36
    • /
    • 2015
  • The purpose of this research is to find out the collection property of nanoparticle in diffusion filter to know particle size dispersion of nanomaterial using inertial force and principle of Brownian diffusion motion. We used inertial filters which are two different type and diffusion filters made by various kinds of Wiremesh and the different pieces of filter to compare with particle size distribution using NaCl particles. Finally, We made a conclusion as follows : (1) the bigger available charging volume is and the larger specific surface area of inertial filter is, the better collection efficiency is. (2) The higher wire-mesh number of filter is, the more collection efficiency of small particle is increasing because the wire of the higher Wiremesh number filter is thinner and denser. (3) The more pieces of wire-mesh filter, the more collection efficiency is increasing because it makes the residence time longer.

Performance Characteristics of Louver Dust Collectors (루버 집진기의 성능특성)

  • Woo, Sang-Hee;Kim, Jong Bum;Park, Tong-Il;Yook, Se-Jin;Kwon, Soon Bark;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • A large amount of wear dust generated during train operation is a major dust source in urban railway tunnels. To check possibility of a louver dust collector for the removal of dust in the railway tunnel, five louver dust collector models were designed and their performance was tested in a wind tunnel. JIS Z 8901 Class 8 dust was used as a test dust. Pressure drop and particle collection efficiency were evaluated with the face velocity ranging from 1 m/s to 4 m/s. At this low velocity range, particle collection efficiency of the louver dust collector was found to be insensitive to air velocity and design parameters. Pressure drop was under 40 Pa, and $PM_{10}$ and $PM_{2.5}$ collection efficiencies were approximately 50% and 30%, respectively.

Numerical Study of Particle Collection Performance of Electrostatic Precipitator Integrated with Double Skin Façade in Residential Buildings (주거건물용 이중외피 통합형 전기집진기의 미세먼지 집진성능 수치해석 평가)

  • Eom, Ye Seul;Choi, Dong Hee;Kang, Dong Hwa
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.73-82
    • /
    • 2018
  • The objective of this study was to evaluate particle collection performance of electrostatic precipitator (ESP) integrated with double skin façade in naturally ventilated residential buildings using numerical method. To evaluate the efficiency, computational fluid dynamics (CFD) simulation based on electric potential and Lagrangian method was applied. The CFD model was validated by comparing the simulated results with the experimental data including thermal characteristic of double skin façade (DSF) and particle removal characteristic of electrostatic precipitator. The validation results showed that the root mean square error (RMSE) between predicted values and measured values of velocity and temperature in intermediate space of DSF was 1.2%. The adequacy of ion space charge density and turbulent model were determined. The RMSE between predicted values and measured values of collection efficiency of ESP was 9.2%. In addition, the case study was performed to present the application of the numerical method based on validation results of ESP integrated with façade.

Experimental Study on Particle Collection Efficiency of Axial-flow Cyclone in Air Handling Unit (공기조화기 장착용 축상유입식 싸이클론의 입자제거효율에 대한 실험적 연구)

  • Kim, Se-Young;Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jin-Ho;Kim, Myung-Joon;Kim, Tae-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.272-280
    • /
    • 2011
  • A novel particle removal system for air handling unit (AHU) of subway station was evaluated experimentally. The novel system was designed in order to minimize the maintenance cost by applying axial-flow cyclones. The system consists of multiple cyclone units and dust trap. Based on our previous numerical study, it was found to be effective for removal $1\sim10{\mu}m$ sized dust particles. In this study, we manufactured the mock-up model and evaluated the model experimentally. Liquid and solid test particles were generated for evaluating collection efficiency of the system and the pressure drop was monitored. The collection efficiency was varied from 41.2% to 85.9% with increasing the sizes of particle from 1 to $6.5{\mu}m$ by particle count ratio of inlet and outlet. The pressure drop was maintained constant less than $20mmH_2O$. In addition, the collection efficiency was estimated by total mass for solid test particles. It was found that the collection efficiency was 65.7% by particle mass ratio of inlet and outlet. It shows that present system can replace current pre-filters used in subway HVAC system for removing particulate matters with minimal operational cost.

Comparison of particle collection characteristics in a wire-cylindrical wet electrostatic precipitator with and without a water film (와이어-실린더형 습식 전기집진기의 수막 유무에 따른 집진 특성 비교)

  • Woo, Chang Gyu;Cho, Won Ki;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.89-95
    • /
    • 2018
  • People's environmental concerns for fine particles in Korea lead to the strong necessity of improving the performance of environmental control systems. Wet electrostatic precipitators (ESPs) are considered as one of the alternatives to overcome the limit of previous dry ESPs, the re-entrainment of collected particles during rapping and back corona problem for high electrical resistivity dusts etc. In this study, a wire-cylindrical ESP with a thin water film has been developed. Particle collection characteristics were compared in the ESP with operations of water film on and off. Particle collection efficiencies at various applied voltages as well as voltage-current curves were almost the same in the ESP with and without a water film. Particle collection performance for PM1.0, PM2.5 and PM10 in the wet ESP with a water film was constantly maintained with operation time even in the high dust loading environment. This results indicate that a uniform water film in our wet ESP was successfully formed with a very thin layer without any dry spot and therefore could continuously clean the collected particles on the inner wall of the ESP without any performance degradation.

Nano and Submicron Sized Particle Collection with Various Voltage Waveforms for Dielectric Barrier Discharge Type 2-Stage ESP (유전체 베리어 방전형 2단 전기집진기의 인가전압 파형별 나노 및 서브마이크론 입자 집진 특성)

  • Park, Jae-Hong;Byeon, Jeong-Hoon;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1261-1266
    • /
    • 2004
  • Dielectric Barrier Discharge (DBD) in air, which has been established for the production of large quantities of ozone, is more recently being applied to a wider range of aftertreatment processes for HAPs (Hazardous Air Pollutants). Although DBD has high electron density and energy, its potential use as precharging nano and submicron particles are not well known. In this work, we measured I-V characteristics of DBD and estimated collection efficiency of the particles by DBD type 2-stage ESP. To examine the particle collection with various applied voltage waveforms of DBD for nano and submicron sized, bimodal particles were generated by a electrical tube furnace and an atomizer.

  • PDF

Numerical Study on the Performance of the Round Type Impactor (원형 임팩터의 성능에 관한 수치적 연구)

  • 허재영;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.292-298
    • /
    • 1991
  • Previous studies on the performance of the round type impactor were reexamined and extended to the case of high particle mass loading. It was pointed out that the previous numerical studies need to be supplemented in the numerical process. The impactor performance was calculated under the same conditions as previous studies by the exact calculation process and it was found out that a tail of the collection efficiency curve, which have not been found in the previous studies, appeared in the results of ours. Numerical results for high particle mass loading show that the value of the collection efficiency in the impactor decreases but better particle-cut characteristics can be obtained, as the amount of the particle mass loading increases.

Computations of Droplet Impingement on Airfoils in Two-Phase Flow

  • Kim, Sang-Dug;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2312-2320
    • /
    • 2005
  • The aerodynamic effects of leading-edge accretion can raise important safety concerns since the formulation of ice causes severe degradation in aerodynamic performance as compared with the clean airfoil. The objective of this study is to develop a numerical simulation strategy for predicting the particle trajectory around an MS-0317 airfoil in the test section of the NASA Glenn Icing Research Tunnel and to investigate the impingement characteristics of droplets on the airfoil surface. In particular, predictions of the mean velocity and turbulence diffusion using turbulent flow solver and Continuous Random Walk method were desired throughout this flow domain in order to investigate droplet dispersion. The collection efficiency distributions over the airfoil surface in simulations with different numbers of droplets, various integration time-steps and particle sizes were compared with experimental data. The large droplet impingement data indicated the trends in impingement characteristics with respect to particle size ; the maximum collection efficiency located at the upper surface near the leading edge, and the maximum value and total collection efficiency were increased as the particle size was increased. The extent of the area impinged on by particles also increased with the increment of the particle size, which is similar as compared with experimental data.