The carbon-ion beam (CIB) generated by the heavy-ion medical accelerator in Chiba (HIMAC) was targeted to 7-day-old rice. Physiological parameters such as growth, and gene expression profiles were examined immediately after CIB irradiation. Dose-dependent growth suppression was seen three days post-irradiation (PI), and all the irradiated plants died by 15 days PI. Microarray (Agilent rice 22K) analysis of the plants immediately after irradiation (iai) revealed effects on gene expression at 270 Gy; 353 genes were up-regulated and 87 down-regulated. Exactly the same set of genes was affected at 90 Gy. Among the highly induced genes were genes involved in information storage and processing, cellular processes and signaling, and metabolism. RT-PCR analysis confirmed the microarray data.
EB irradiation method was used to prepare polyvinyl alcohol (PVA) capped silver nanoparticles under various conditions including PVA concentration, $AgNO_3$ concentration, IPA concentration, and EB dosage. The increase in the distribution of particles size was observed with an increase in the concentrations of PVA, $AgNO_3$, IPA, and EB dosage. $AgNO_3$ concentration, IPA concentration, and EB dosage were found to have a great effect on the amount of silver particles formed in PVA matrix by EB irradiation method. These results were confirmed by XRD, UV, and TEM. XRD (X-ray diffraction) technique confirmed the zero valent state of silver. Optical studies were done using UV-visible spectrophotometer to see the variation of silver particles formed in PVA matrix. Transmission Electron Microscopic (TEM) was employed to show the particle size and distribution of silver foamed in PVA matrix.
The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ~0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper.
Journal of the Korean Society for Precision Engineering
/
v.31
no.12
/
pp.1101-1106
/
2014
Hybrid manufacturing technology has been advanced to overcome limitations due to traditional fabrication methods. To fabricate a micro/nano-scale structure, various manufacturing technologies such as lithography and etching were attempted. Since these manufacturing processes are limited by their materials, temperature and features, it is necessary to develop a new three-dimensional (3D) printing method. A novel nano-scale 3D printing system was developed consisting of the Nano-Particle Deposition System (NPDS) and the Focused Ion Beam (FIB) to overcome these limitations. By repeating deposition and machining processes, it was possible to fabricate micro/nano-scale 3D structures with various metals and ceramics. Since each process works in different chambers, a transfer process is required. In this research, nanoscale 3D printing system was briefly explained and an alignment algorithm for nano-scale 3D printing system was developed. Implementing the algorithm leads to an accepted error margin of 0.5% by compensating error in rotational, horizontal, and vertical axes.
International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
/
v.26
no.1
/
pp.43-58
/
1998
The Kwinana Shoreline Fumigation Experiment (KSFE) took place at Fremantle, WA, Australia between January 23 and February 8, 1995. The CSIRO DAR LIDAR measured plume sections from near the Kwinana Power Station (KPS) stacks to up to about 5 km downstream. It also measured boundary layer aerosols and the structure of the boundary layer on some occasions. Both stages A and C of KPS were used as tracers at different times. The heart of the LIDAR system is a Neodymium-doped Yttrium-aluminum-garnet (Nd:YAG) laser operating at a fundamental wavelength of 1064 nm, with harmonics of 532 nm and 355 nm. For these experiments the third harmonic was used because the UV wavelength at 355 nm is eye safe beyond about 50 m. The laser fires a pulse of light 6 ns in duration (about 1.8 m long) and with an energy (at the third harmonic) of about 70 mJ. This pulse subsequently scattered and absorbed by both air molecules and particles in the atmosphere. A small fraction of the laser beam is scattered back to the LIDAR, collected by a telescope and detected by a photo-multiplier tube. The intensity of the signal as a function of time is a measure of the particle concentration as a function of distance along the line of the laser shot. The smoke plume was clearly identifiable in the scans both before and after fumigation in the thermal internal boundary layer (TIBL). Both power station plumes were detected. Over the 9 days of operation, 1,568 plumes scans (214 series) were performed. Essentially all of these will provide instantaneous plume heights and widths, and there are many periods of continuous operation over several hours when it should be possible to compile hourly average plume statistics as well. The results of four days LIDAR observations of the dispersion of smoke plume in the TIBL at a coastal site are presented for the case of stages A and C.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.16
no.1
/
pp.118-123
/
2017
It is well known that water jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics, and composite materials because of some advantages, such as heatless and non-contacting cutting different from the laser beam machining. In this paper, we proposed the simulation model of waterjet by lengths and the inner spiral structure of the nozzle. The simulation results show that the outlet velocity of the nozzle is faster than the inlet. Furthermore, we found rapid velocity reduction after passing through the outlet. The nozzle of diameter ${\phi}500$ and length 70mm, shows the optimal fluid width and velocity distribution. Also, the nozzle with inner spiral structure shows a Gaussian distribution of velocity and this model is almost twice as fast as the model without spiral structure, within the effective standoff distance (2.5 mm). In the future, when inserting abrasive material into the waterjet, we plan to analyze the fluid flow and the particle behavior through a simulation model.
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.283.2-283.2
/
2014
열필라멘트 화학증착공정(Hot Wire Chemical Vapor Deposition)에서 기상 에서 생성되는 하전된 실리콘 나노입자와 저온결정성 실리콘박막 증착의 연관성을 압력의 변화에 따른 상호비교를 통해 조사하였다. 필라멘트 온도는 $1800^{\circ}C$로 고정시키고 0.3~2 torr의 범위에서 공정 압력을 변화시키면서 증착하였다. 압력이 증가함에 따라 증착된 실리콘 박막의 결정화도는 증가하였으며, 증착속도는 감소하였다. 반응기 압력에 따른 기상에서 생성되는 나노입자의 크기분포의 변화를 조사하기 위하여 탄소막이 코팅된 투과전자현미경(Transmission Electron Microscopy) 그리드 위에 실리콘 나노입자를 포획하고 관찰하였다. 포획된 실리콘 나노입자의 크기분포와 개수농도는 압력이 증가함에 따라 감소하였다. 투과전자현미경을 이용하여 분석한 결과, 나노입자는 결정성 구조를 보였다. 압력이 증가함에 따라 나노입자의 크기가 감소하고 개수농도가 감소하는 것은 증착속도의 감소와 관련됨을 알 수 있다. 한편, 공정압력 증가에 따른 나노입자의 크기분포 및 개수농도 감소와 증착속도의 감소는 일반적으로 알려진 기상에서 석출하는 고상의 평형석출량(equilibrium amount of precipitation)이 압력의 증가함에 따라 증가한다는 사실과 일치하지 않는다. 이러한 압력경향성은 Si-H 시스템이 0.3~2 torr의 압력 영역에서 retrograde solubility를 갖는 것을 의미한다. 나노입자의 하전여부, 크기분포 및 개수농도를 측정하기 위하여 입자빔질량분석장비(Particle Beam Mass Spectroscopy)를 이용하였다. 그 결과, 실리콘 나노입자는 양 또는 음의 극성을 가진 하전된 상태임을 확인하였고, 투과전자현미경(TEM) grid에 포획한 실리콘 나노입자의 크기와 경향성이 일치하였다. 이는 나노입자가 저온의 기판에서 핵생성되어 성장하여 생성된 것이 아니라 열필라멘트 주위의 고온영역에서 생성된 것을 의미한다.
Kim, Yeong-Seok;Kim, Dong-Bin;Kim, Hyeong-U;Kim, Tae-Seong
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.217.1-217.1
/
2014
반도체 및 디스플레이 산업은 많은 공정들에서 저온 플라즈마 반응을 이용한다. 특히 소자 제작을 위한 실리콘 박막의 증착은 저온 플라즈마 공정의 주요 공정이다. 하지만 실리콘 박막을 합성하는데 있어서 저온 플라즈마에서 형성되는 실리콘 나노 입자는, 오염입자로써 박막의 특성을 악화시켜 소자생산 수율을 악화시키는 주요 원인이 되고 있다. 따라서 플라즈마에서 입자 형성의 원인이 되는 화학반응 및 입자들의 성장 매커니즘에 대한 연구는, 1980년대 플라즈마 공정에서 입자 합성이 보고된 이래 공정의 최적화를 위해 꾸준히 연구되어왔다. 이러한 매커니즘의 연구들은, 플라즈마 화학반응에 의해 실리콘 입자 핵을 만들어 내는 과정과 입자들이 충돌에 의해 성장해가는 과정으로 나눠진다. 플라즈마 화학 반응 과정은 아레니우스 방정식에 의해 정의된 반응계수를 이용하여 플라즈마 내 전자와 이온, 중성 화학종들이 전자 온도와 전자 밀도, 챔버 온도 등에 의해 결정되는 현상을 모사한다. 또한 이 과정에서 실리콘을 포함하는 화학종들의 반응에 의해 핵이 생성 되가는 양상을 모사한다. 생성된 핵은 충돌에 의해 입자가 성장해 가는 과정의 가장 작은 입자로써 이용된다. 입자들이 성장해가는 과정은 입자들이 서로 충돌하면서 다양한 입경의 입자로 분화되어가는 현상을 모사한다. 이 과정에 의해 다양한 입경분포로 분화된 입자들은 플라즈마 내 전자에 의해 하전되며, 이러한 하전 양상은 입경에 따라 다른 분포를 보인다. 본 연구에서는 입자의 하전 분포를 고려하여, 입자들의 성장의 주요 원인인 입자간의 충돌을 대표하는 충돌주파수를 수정하는 방식을 채택하여 보다 정밀한 입자 성장 양상을 모델링하였다. Inductively coupled plasma (ICP) 타입의 저온 플라즈마 반응기에서 합성된 입자들을 Particle Beam Mass Spectrometer (PBMS)와 Scanning Electron Microscope (SEM)를 이용하여 입경분포를 측정한 데이터와 모델링에 의해 계산된 결과를 비교하여 본 모델의 유효성을 검증하였다. 검증을 위해 100~300 mtorr의 챔버 압력 조건과 100~350 W의 입력 전력 조건들을 달리하며 측정한 결과와 계산한 데이터를 조건별로 비교하였다.
Kim, Myeong-Jun;Kim, Yeong-Seok;Kim, Dong-Bin;Mun, Ji-Hun;Gang, Sang-U;Kim, Tae-Seong
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.279.2-279.2
/
2014
반도체 선폭이 20 nm급까지 감소함에 따라 기존에 수율에 문제를 끼치던 공정 외부 유입 입자뿐만 아니라, 공정 도중에 발생하는 수~수십 나노의 작은 입자도 수율에 악영향을 끼치게 되었다. 이에 따라 저압, 극청정 조건에서 진행되는 공정 중 발생하는 입자를 실시간으로 모니터링 할 수 있는 장비에 대한 수요가 발생하고 있다. Particle beam mass spectrometer (PBMS)는 이러한 요구사항을 만족할 수 있는 장비로 100 mtorr의 공정 조건에서 5 nm 이상의 입자의 직경별 수농도를 측정할 수 있는 장비이다. PBMS로 입자의 수농도를 측정하기 위해서는 PBMS 전단에서 입자를 중앙으로 집속할 필요가 있다. 공기역학렌즈는 PBMS 전단에서 입자를 집속시키기 위해 일반적으로 널리 사용되고 있는 장비로 여러 개의 오리피스로 이루어져 있다. 공기역학렌즈를 지나는 수송 유체와 입자는 이러한 연속 오리피스를 거치면서 팽창과 수축을 반복하며, 관성력의 차이로 인해 입자가 중앙으로 집속된다. 그러나 기존 공기역학렌즈는 고정된 직경의 오리피스를 사용하기 때문에 설계된 공정조건 이외에는 입자의 집속효율이 감소한다는 단점을 지닌다. 따라서 공정조건이 바뀔 경우 공기역학렌즈를 교체해야 되며, 진공이라는 환경하에서 이러한 교체는 많은 시간과 노력을 요구로 한다. 본 연구에서는 이러한 공기역학렌즈의 문제점을 해결하기 위해 다양한 공정조건에서 교체 없이 사용할 수 있는 새로운 형태의 공기역학렌즈인 조기래형 공기역학렌즈를 제안하였다. 각각의 오리피스가 중공의 직경을 변경할 수 있는 구조인 조리개의 형태로 설계되어 있어, 공정조건에 따라 중공의 직경을 변경함으로써 입자의 집속을 결정하는 요소인 Stokes number를 조절 할 수 있다. 이러한 조리개형 공기 역학 렌즈의 성능을 평가하기 위해 수치해석적인 방법을 이용하였다. 공기 역학 렌즈 전단의 압력을 0.1~10 torr까지 변화시켜가며 다양한 공정조건에서 오리피스의 직경만을 변경하여 입자 집속 가능 여부를 판단하였으며, 조리개 형태의 구조상 발생할 수 있는 leak로 인한 입자 집속 효율의 변화도 평가하였다.
Proceedings of the Korean Vacuum Society Conference
/
2011.02a
/
pp.39-39
/
2011
반도체 생산의 주요 공정 중 하나인 세정 공정은 공정 중 발생하는 여러 가지 부산물에 의한오염을 효과적으로 제거하여 수율 향상에 큰 영향을 미친다. 현재 주로 쓰이는 세정 공정은 습식 세정 공정으로 화학 약품을 이용하지만 패턴 손상 및 웨이퍼 대구경화에 따른 문제 등이 대두되어 이를 대체할 세정 공정의 도입이 요구되고 있다. 이에 따라 건식 세정에 대한 관심이 증가하고 있으며 에어로졸 세정이 대표적 공정으로 개발 되었으나 마이크로 단위의 발생 에어로졸 입경으로 인해 패턴 손상 문제를 해결하지 못하였다. 이러한 문제점을 극복하기 위하여 응축에 의해 형성되는 입자 크기를 줄이는 것에 관한 연구가 진행되어 왔고, 대응 방안으로 개발된 것이 가스 클러스터 세정이다. 가스 클러스터란 작동 기체의 분자가 수십, 수백 개 뭉쳐있는 형태 (cluster)를 뜻하며 이 때 형성된 클러스터는 수 nm 크기를 가진다. 그리고 짧은 시간의 응축에 의해 수십 nm 크기까지 성장하게 된다. 즉, 입자로 성장할 수 있는 시간과 환경을 형성하지 않음으로써 작은 크기의 클러스터에 의해 패턴 사이의 오염물질을 물리적으로 제거하고 다시 기체상 물질로 환원되어 부산물을 남기지 않는 공정이다. 이러한 작동 환경을 조성하기 위해서는 진공도와 노즐 출구 속도에 대한 설계 단계부터의 이론적 연구를 통한 입자 크기 예측과 세정 조건에 따라서 발생하는 클러스터의 크기 분포 특성을 측정하는 것이 필수적이다. 따라서 본 연구에서는 실시간 저압 환경에서의 측정이 가능하며, 다양한 크기의 입자를 실시간으로 측정할 수 있는 particle beam mass spectrometer (PBMS)를 이용하여 세정 공정 중 발생하는 클러스터의 크기 분포를 측정하는 연구를 수행하였다. 클러스터의 측정은 노즐에 유입되는 유량과 냉매 온도를 변수로 하여 수행하였다. 각각의 조건에 따라서 최빈값은 오차범위 내에서 일정한 것을 확인하였으며, 50 nm 이하의 값으로 가스 클러스터 공정이 패턴 손상 없이 오염입자를 제거할 수 있음을 실험적으로 확인할 수 있었다. 또한 유량의 증가에 따라 세정에 사용되는 클러스터의 입경이 증가하며, 냉매 온도가 낮아질수록 클러스터 입경이 증가하는 경향을 확인할 수 있었다. 클러스터 크기는 오염 입자와의 충돌에 의해 작용하는 힘으로 오염입자를 제거하는 메커니즘을 사용하는 가스 클러스터 세정 장치에 있어 중요성이 크다 할 수 있으며 추후 지속적 연구에 의한 세정 기술의 최적화가 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.