• Title/Summary/Keyword: Particle

Search Result 15,995, Processing Time 0.048 seconds

Topographic characteristics of Yeonho lake, Uljin-gun, Gyeongsangbuk-do (경북 울진 연호(蓮湖)의 지형적 특성)

  • Woo, Seung-Hyun
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.211-224
    • /
    • 2016
  • Natural lakes are estimated in variety with that's function or value depending on age environment or geographical characteristics. There are many kind of natural lakes, but the kind of natural lake is limited in rivers in korea flowing into East Sea. However, Yeonho lake in Uljin has different geographical characteristics with oxbow lake or lagoon which is common in korea's river flowing into East Sea. Therefore the purpose of this study is to analyze geographical characteristics due to the process of Yeonho's formation. Further more research for protecting wetland is needed to adequately preserve, depending on the geomorpologic process. To analyze geographical characteristics, it was essential to compare and analyze topographical map of 1918 1956 2012 and I pictured estinated line of bedrock and longitudinal section of Nam-dae cheon(Riv) Yeonho cheon(Riv). In addition, I denoted flooded areas through design flood level of Nam-dae cheon(Riv) Yeonho cheon(Riv) and analyzed particle size distribution of deposited sediment due to consider deposit environment. The results of study are as follows. In conclusion, Yeonho lake is floodbasin which was not researched at river flowing into East Sea. Through this study, my opinion is that floodbasin can be formed in the river that is steep and short. I argue that preservation methods will be seeked by geomorphologic process of floodbasin and development of downtown.

  • PDF

Material Analysis and Coloring Characteristics of Korean Traditional Copper-red Pigment (Jinsa) (동화(진사) 안료의 재료과학적 분석 및 발색특성)

  • Kim, Ji-Young;Cho, Hyun-Kyung;Jun, Byung-Kyu;Cho, Nam-Chul;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 2011
  • Copper-red (Dongwha, Jinsa) is Korean traditional inorganic pigment used for red-coloring on the porcelain surface during Goryeo and Joseon Periods. Trace amounts of copper-red porcelains are handed down because of the technical difficulty of making and coloring of the pigment. It is known that copper ore sources were extensively distributed in Korea according to old literatures and some of them are still producing copper ore at this present. Main types of copper-bearing mineral in Korea are chalcopyrite ($CuFeS_2$) and malachite ($Cu_2CO_3(OH)_2$), and they are easily collected from the ground surface. This means Korea had geographical and economic geological advantages for supplying raw material of the pigment. These two minerals showed good red-coloring in color test for porcelain pigment. As a coloring element, copper showed micro size less than $5{\mu}m$ in diameter in glaze matrix. The dispersion of copper particle is the most decisive factor for red chromaticity of copper-red porcelain, as well as copper content of the pigment.

A Study on the Analysis of Outside Mural Paintings treated in Maitreya Hall of Geumsan-sa Buddhist Temple, Korea (금산사미륵전 외벽화 보존처리된 벽체의 분석 연구)

  • Han, Kyeong-Soon;Lee, Sang-Jin;Lee, Haw-Soo
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.445-458
    • /
    • 2010
  • The deterioration and structural damage such as exfoliation, cracks, and separation of painted layer on the wall paintings of Maitreya Hall in Geumsan-sa temple have been accelerated since it was re-positioned to the original place after the dismantling from the building in 1993. The examination of which result and analysis described in this study, is a preliminary survey for establishing conservation plan of the wall paintings. It aimed at the understanding of the physical and chemical characteristics of the materials applied in the 1993 conservation. The research focused on the south walls which displayed the worst condition compared to other walls. Samples for the examination for the understanding of micro-structure, chemical composition, cristalisation, and particle distribution, were collected for finishing, middle, and consolidated layers of the walls between pillars and the ones between brackets. Those samples were collected from separated fragments of the walls. The sample analysis displayed that: 1. the 1993 conservation used the similar type of weathered soil as the original for the finishing layer, and such soil and sand for the middle layer; 2. those walls are composed of a group of mineral particles which are relatively equal in size and shape and in their distribution; 3. the mineral particles were cohered forming solid aggregate due to the application of acrylic resin for the reinforcement on the wall. The main composition of crystalisation on the first and the second reinforcement layers of the back walls were lime plaster ($CaSO_4{\cdot}2H_2O$). The overall examination confirmed that the priority of the future conservation treatment should be given to the removal of the first and the second layers of reinforcement and the treatment on the back walls which were partially consolidated.

TRIO (Triplet Ionospheric Observatory) CINEMA

  • Lee, Dong-Hun;Seon, Jong-Ho;Jin, Ho;Kim, Khan-Hyuk;Lee, Jae-Jin;Jeon, Sang-Min;Pak, Soo-Jong;Jang, Min-Hwan;Kim, Kap-Sung;Lin, R.P.;Parks, G.K.;Halekas, J.S.;Larson, D.E.;Eastwood, J.P.;Roelof, E.C.;Horbury, T.S.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.42.3-43
    • /
    • 2009
  • Triplets of identical cubesats will be built to carry out the following scientific objectives: i) multi-observations of ionospheric ENA (Energetic Neutral Atom) imaging, ii) ionospheric signature of suprathermal electrons and ions associated with auroral acceleration as well as electron microbursts, and iii) complementary measurements of magnetic fields for particle data. Each satellite, a cubesat for ion, neutral, electron, and magnetic fields (CINEMA), is equipped with a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. TRIO is developed by three institutes: i) two CINEMA by Kyung Hee University (KHU) under the WCU program, ii) one CINEMA by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. Multi-spacecraft observations in the STEIN instruments will provide i) stereo ENA imaging with a wide angle in local times, which are sensitive to the evolution of ring current phase space distributions, ii) suprathermal electron measurements with narrow spacings, which reveal the differential signature of accelerated electrons driven by Alfven waves and/or double layer formation in the ionosphere between the acceleration region and the aurora, and iii) suprathermal ion precipitation when the storm-time ring current appears. In addition, multi-spacecraft magnetic field measurements in low earth orbits will allow the tracking of the phase fronts of ULF waves, FTEs, and quasi-periodic reconnection events between ground-based magnetometer data and upstream satellite data.

  • PDF

Emission Characteristics of PM10 and PM2.5 in Thermal Power Plants Using Different Fuel Types (연료별 화력발전시설의 미세먼지(PM10 및 PM2.5) 배출특성)

  • Park, Hyun-Soo;Lee, Duk-An;Yang, Jeong-Go;Jang, Seong-Guk;Kim, Hwan-Beom;Kim, Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.534-541
    • /
    • 2018
  • Concentrations of total particulate matter (TPM), $PM_{10}$ and $PM_{2.5}$ were measured at three different sites based on each different fuel type (solid, liquid and gas) used in thermal power plants operating in Yeosu and Gwangyang National Industrial Complexes during 2017. The highest concentrations of TPM, $PM_{10}$, and $PM_{2.5}$ were observed at the solid fuel facility, and these values were $3.356mg/Sm^3$, $2.342mg/Sm^3$ and $1.834mg/Sm^3$, respectively. The ratio of $PM_{2.5}$ to TPM was the highest value of 54.6% in solid fuel case, and the lowest was 35.7% found in liquid fuel case. As a result of analyzing 9 kinds of metal compound with respect to each particle size, the metal concentration of TPM is higher than those of $PM_{10}$ and $PM_{2.5}$ in all fuel types. Total concentrations of metal elements in TPM by fuel difference are $1.2702mg/Sm^3$ in solid fuel, 0.0603 mg/Sm3 in liquid fuel, and $0.0733mg/Sm^3$ in gas fuel, respectively. Relatively higher total metal concentration in gas fuel than in liquid fuel was found; and this could be higher Cr and Al concentrations in use of gas fuel. As a result of estimating the emission factors of each facility, in case of solid fuel, TPM emissions per electricity production were found to be 0.7080 kt/PJ, followed by liquid fuel and gas fuel. $PM_{10}$ and $PM_{2.5}$ emissions per hour of electricity production were similar to those of TPM.

The Biocidal Activity of Nano-sized Silver Particles Comparing with Silver Ion (은 이온과의 비교를 통한 나노 은 입자의 항균 특성 연구)

  • Kim, Jee-Yeon;Kim, Sung-Eun;Kim, Jae-Eun;Lee, Jong-Chan;Yoon, Je-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.771-776
    • /
    • 2005
  • In recent days, there is much interest in the biocidal activity of silver since silver is known to be safe and effective as disinfectant and biocidal material against coliforms and viruses. In particular, nano silted silver particles which can be used as effective biocidal material received more attention. Accordingly, it is important to investigate antimicrobial activity and mechanism of nano sized silver particles prepared in a cost-effective manner. In this study, nano sized silver particles were prepared via photoreduction of a silver salt ($AgNO_3$) in the bulk phase of $PEO_{20}-PPO_{70}-PEO_{20}$ (Pluronic 123) block copolymer The antimicrobial efficacy of silver nano particles against E. coli was investigated and compared with that of silver ion as the concentration of silver nano particles, pH ($5.6{\sim}8.2$), temperature ($4^{\circ}C{\sim}35^{\circ}C$) varied in aqueous system. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was used to examine the nature of damaged microorganism with nano sized silver particles and silver ion. This study showed that antimicrobial efficacy of silver nano particles was approximately one twentieth than that of silver ion. It was more biocidal at higher pH in contrast with silver ion. In addition, nano silver particles was demonstrated to disrupt the outer membrane of E. coli, subsequently causing their aggregation. On the other hand, silver ion diffused into the cell damaging the cytoplasmic membrane without disrupting the outer membrane of E. coli.

Pre-treatment of River Water Using Biological Aerated Filtration (호기성 생물여과 공정을 이용한 하천수 전처리)

  • Choi, Dong-Ho;Choi, Hyung-Joo;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.276-285
    • /
    • 2006
  • When polluted stream water was treated with biological aerated filter(BAF) in pilot plant, all operation with 90, 60, 45 and 30 min of EBCT at fixed $0.1m^3air/m^2min$ of aeration showed 80% or higher treatment efficiency of particle materials(SS, turbidity and Chl.-a) and 85% or higher efficiency of ammonia nitrogen removal. It was thought that, in case of BOD, biological stability may sufficiently be assured with BAF because grade III or IV inflow water was changed to grade I for outflow water. In case of $COD_{Mn}$, about 60% of removal efficiency was found. When the mechanism of the result was investigated, about 30% of COD materials was produced by algae clogged in the reactor. There was almost no biological decomposition because specific substrate utilization rate of algogenic organic materials were $0.0245mg{\cdot}COD_{Mn}/mg{\cdot}VSS{\cdot}day$, thus partial backwashing(washing the media in 1 m upper of the reactor once a day) was required. It is thought that elevation of removal rate about 10% of $COD_{Mn}$ and 5.5% of $BOD_5$ could be obtained with partial backwashing resulting in assurance of biologically more stable raw water and that saving backwashing water may be significant.

A Study on the Drying and Carbonization of Sewage Sludge in Fluidized Bed Reactor (유동층 반응기에서 하수슬러지의 건조 및 탄화 특성에 관한 연구)

  • Choung, Young-Hean;Cho, Ki-Chul;Kang, Dong-Hyo;Kim, Yi-Kwang;Park, Chang-Woong;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.746-751
    • /
    • 2006
  • In this study, drying and carbonization experiment was conducted in a fluidized bed reactor according to the variations in gas velocity, particle size, and reactor temperature. As a result, the weight loss rates of sludge by drying in the fixed bed and fluidized bed type dryer showed that drying in the fluidized bed was about 6 times faster than drying in the fixed bed, and the weight loss rates of sludge by carbonization in the fixed bed and fluidized bed type reactor showed that carbonization in the fluidized bed was about 4 times faster than drying in the fixed bed. This implies that carbonization in the fluidized bed was completed within 10 minutes. Although the amount of char decreased with the increase of carboniration temperature, the amount of char became similar at upper 873K. Also, the amount of char decreased with increasing gas velocity. Consequently, it could be efficient that slow fluidization should be maintained within the range of fluidization in case of fluidized carbonization of sewage sludge at 873K.

Activity Comparison According to Prepared Method of Cu-Mn Oxide Catalyst for Toluene Combustion (톨루엔 분해를 위한 구리-망간 산화물 촉매의 제조방법에 따른 활성 비교)

  • Kim, Hye-Jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.249-256
    • /
    • 2006
  • Catalytic combustion of toluene was investigated on the Cu-Mn oxide catalysts prepared by the impregnation(Imp) and the deposition-precipitation(DP) methods. The mixing of copper and manganese has been found to enhance the activity of catalysts. It is then found that catalytic efficiency of the Cu-Mn oxide catalyst prepared by the DP method on combustion of toluene is much higher than that of the Cu-Mn oxide catalyst prepared by Imp method with the same chemical composition. The catalyst prepared by the deposition-precipitation method observed no change of toluene conversion at time on stream during 10 days and at the addition of water vapor. On the basis of catalyst characterization data, it has been suggested that the catalysts prepared by the DP method showed uniform distribution and smaller particle size on the surface of catalyst and then enhanced reduction capability of catalysts. Therefore, we think that the DP method leads on progressive capacity of catalyst and promotes stability of catalyst. It was also presumed that catalytic conversion of toluene on the Cu-Mn oxide catalyst depends on redox reaction and $Cu_{1.5}Mn_{1.5}O_4$ spinel phase acts as the major active sites of catalyst.

Photocatalytic Oxidation of Free Cyanide Using UV LED (자외선 LED를 이용한 자유 시안의 광촉매 산화)

  • Kim, Seong Hee;Seol, Jeong Woo;Lee, Woo Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.34-44
    • /
    • 2015
  • This study was initiated to remove free cyanide from wastewater using the process of photocatalytic oxidation. UV lamp has been extensively used as a light source in conventional photocatalytic oxidation, but numerous drawbacks of UV lamp have been raised so far. Thus, this study focused on evaluating the applicability of UV LED as an alternative light source to overcome the drawbacks of UV lamp. Furthermore, the effects of diverse operational parameters on the performance of process were investigated. The results demonstrated the applicability of UV LED as a substitute of UV lamp. Also, the results show that the performance of process was improved by the increase in the number of UV LEDs used. To acquire economic feasibility as well as high efficacy, however, it is required to determine the optimum number of UV LED prior to practical implementation of the process. Among the three types of photocatalysts (anatase, rutile, and Degussa P25) tested, the Degussa P25 showed the greatest performance, and it was proven that the process was not improved as much as the Degussa P25 through simple mixing of anatase and rutile without any pretreatment. In addition, the removal efficiency of free cyanide appeared to be increased with the decrease in the particle size of $TiO_2$ photocatalyst. Besides, the process was enhanced with injection of oxygen which is considered as a major electron acceptor in the photocatalytic oxidation.