• Title/Summary/Keyword: Particle

Search Result 16,012, Processing Time 0.042 seconds

Development of a Direct Evaluation Method to Measure the Rancidity of Yeonhaeju Soybean (Bazaz) Powders during Storage via the Fluorescence Spectrum Test (Fluorescence spectrum test를 이용한 연해주 대두(Bazaz) 분말의 저장 중 산패도 측정법 개발)

  • Uhm, Joo-Tae;Yoon, Won-Byong
    • Food Science and Preservation
    • /
    • v.19 no.5
    • /
    • pp.639-644
    • /
    • 2012
  • The rancidity of soybean (Glycine max L.) from Yeonhaeju, called "Bazaz", in powder forms was evaluated through a fluorescence spectrum test (FST). The results from the FST were validated by comparing the TBA and acid values. Soybean powders were stored in 25, and $90^{\circ}C$ for 20 days. The maximum excitation and maximum emission of fluorescent compounds generated from the soybean powder during storage were observed at the 360 nm and 430-440 nm wavelengths, respectively. The mean particle size of soybean powder was maintained at $40{\mu}m$ to avoid the dependence of the reaction area during measurement. According to the FST results, lipid oxidation did not actively progress during storage at $25^{\circ}C$. The fluorescence intensity (FI) from FST on the first day of storage was not significantly different from that on the last day of storage (day 20; p < 0.05), but the FI dramatically increased at $90^{\circ}C$. A smooth increase was observed in the initial stage; then, after 11 days of storage, the FI value increased by nearly 100% compared to that on the first day. The FI values were compared with TBA and acid values that were measured under the same storage conditions. All the values at $25^{\circ}C$ showed similar patterns during storage, but at $90^{\circ}C$, the FI and acid values showed similar patterns but the TBA decreased after reaching the maximum values on storage day 12. The results demonstrated that FST may be useful for measuring the rancidity of the powder form of soybean because it does not require extraction to measure the rancidity.

Spray-dried powder preparation of pumpkin sweet potato hydrolysates and its physicochemical properties (호박고구마 효소 분해물의 분무건조 분말 제조 및 물리화학적 품질특성)

  • Lee, Dae-Hoon;Jang, Jong-Hyun;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.24 no.2
    • /
    • pp.246-253
    • /
    • 2017
  • This study was conducted prepare spray-dried powder using pumpkin sweet potato hydrolysates and examine the physicochemical properties of the powder. The insoluble dietary fiber and soluble dietary fiber of the pumpkin sweet potato treated by enzyme were 4.17% and 2.07%, respectively. The spray-dried pumpkin sweet potato hydrolysates was manufactured via spray-drying with different forming agents: i.e., pectin 0.1%, 0.5%, 1%, and 2.0%. The moisture contents and total starches of the spray-dried powders were approximately 1.68-2.46 and 45.32-46.51%, respectively. The color of the L and a value decreased, and that of the b and ${\Delta}E$ value increased. The particle size and outer topology of the spray-dried powders were $37.17-42.32{\mu}m$, and its shape was generally globular. The water absorption index of the spray-dried powder (1.74-1.91) was lower than that of the freeze-dried powder (2.15). The water solubility index of the spray-dried powder, 80.75-87.61%, was higher than that of the freeze-dried powder (70.47%). The adhesion values of spray-dried powder to epithelial HT-29 cells were 2.66-6.18% of the initial cell counts, whereas freeze-dried powder showed lower adhesive ability (1.79%). The in vitro human digestibility in the spray-dried powder was 70.09% which is very effective in digestion.

Preparation of Trinitrophenyl Cellulose as Substrate for Cellulase Assay (Trinitrophenyl Cellulose의 조제)

  • Maeng, Jeong-Seob;Nam, Yoon-Kyu;Park, Seung-Heui;Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.2
    • /
    • pp.151-155
    • /
    • 1995
  • Two types of modified celluloses which contain trinitrophenyl groups as chromophore were synthesized from carboxymethyl cellulose Whatman CM 70 and CM 32. Diaminoethyl groups were added to the CM 70 and CM 32 to make DAE-CM celluloses and then the DAE-CM groups were substituted by 2,4,6-trinitrophenyl groups to produce TNP-celluloses. Average particle size of the TNP-cellulose from CM 32 was $44.6{\pm}9.6{\mu}m$ in diameter and $127.9{\pm}22.5{\mu}m$ in length, which was much smaller than those from CM 70, however its TNP-moiety per gram determined by using the molar extinction coefficient $1.33{\times}10^4$ of ${\varepsilon}$-TNP-lysine at 345 nm, was 0.68 millimoles, which was 5.6-fold greater than those from CM 70. The absorption spectrum of TNP-oligosaccharides which were the soluble products of TNP-celluloses by a cellulase preparation Onozuka R-10, showed a maximal peak at 344 nm. Increases in the absorbance during hydrolysis were linear with the enzyme concentration, and the differences of slope values between two types of TNP-celluloses that the more semsitive assay could be achieved by using those from CM 32 as substrate at the low range of the enzyme concentration.

  • PDF

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

COMPARISON OF DIFFUSION COEFFICIENTS AND ACTIVATION ENERGIES FOR AG DIFFUSION IN SILICON CARBIDE

  • KIM, BONG GOO;YEO, SUNGHWAN;LEE, YOUNG WOO;CHO, MOON SUNG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.608-616
    • /
    • 2015
  • The migration of silver (Ag) in silicon carbide (SiC) and $^{110m}Ag$ through SiC of irradiated tristructural isotropic (TRISO) fuel has been studied for the past three to four decades. However, there is no satisfactory explanation for the transport mechanism of Ag in SiC. In this work, the diffusion coefficients of Ag measured and/or estimated in previous studies were reviewed, and then pre-exponential factors and activation energies from the previous experiments were evaluated using Arrhenius equation. The activation energy is $247.4kJ{\cdot}mol^{-1}$ from Ag paste experiments between two SiC layers produced using fluidized-bed chemical vapor deposition (FBCVD), $125.3kJ{\cdot}mol^{-1}$ from integral release experiments (annealing of irradiated TRISO fuel), $121.8kJ{\cdot}mol^{-1}$ from fractional Ag release during irradiation of TRISO fuel in high flux reactor (HFR), and $274.8kJ{\cdot}mol^{-1}$ from Ag ion implantation experiments, respectively. The activation energy from ion implantation experiments is greater than that from Ag paste, fractional release and integral release, and the activation energy from Ag paste experiments is approximately two times greater than that from integral release experiments and fractional Ag release during the irradiation of TRISO fuel in HFR. The pre-exponential factors are also very different depending on the experimental methods and estimation. From a comparison of the pre-exponential factors and activation energies, it can be analogized that the diffusion mechanism of Ag using ion implantation experiment is different from other experiments, such as a Ag paste experiment, integral release experiments, and heating experiments after irradiating TRISO fuel in HFR. However, the results of this work do not support the long held assumption that Ag release from FBCVD-SiC, used for the coating layer in TRISO fuel, is dominated by grain boundary diffusion. In order to understand in detail the transport mechanism of Ag through the coating layer, FBCVD-SiC in TRISO fuel, a microstructural change caused by neutron irradiation during operation has to be fully considered.

Properties of Low-Temperature Sol-Gel TiO2 Thin Films with Catalyst Content (졸-겔법으로 제작된 저온 TiO2 박막의 촉매농도에 따른 광분해 특성 분석)

  • Hong, Hyun-Joo;Heo, Min-Chan;Hahn, Sung-Hong;Kim, Eui-Jung;Lee, Chung-Woo;Joo, Jong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.296-302
    • /
    • 2006
  • ILow-temperature $TiO_2$ sol was synthesized with various catalyst contents by using a sol-gel method. $TiO_2$ thin films were produced by a dip-coating method and their optical, structural and photocatalytic properties were examined. Transmittance of $TiO_2$ thin films with 0.10 mol, 0.25 mol, 0.50 mol and 0.75 mol catalyst content showed high transmittance in the visible range. XRD results showed the anatase-to-rutile phase transition was accelerated with increasing catalyst content and the crystallinity size of the $TiO_2$ thin films increased with increasing catalyst content. SEM results indicated that the particle size of the $TiO_2$ thin films was the smallest with catalyst content of 0.25 mol. Photocatalytic results showed that methylene blue was completely decomposed in the presence of anatase film prepared with 0.10 mol, 0.25 mol and 0.50 mol catalyst content.

The optimization of extraction process on hemicellulose from rice bran (미강유래 식이섬유 헤미셀룰로오스의 추출 공정 최적화)

  • Jung, Ji-Eun;Choi, Yong-Hee
    • Food Science and Preservation
    • /
    • v.15 no.4
    • /
    • pp.532-541
    • /
    • 2008
  • A central composite design was applied to investigate the effects of the independent variables of NaOH concentration(X1) and extraction time(X2) on dependent variables such as Yield(Y1), Xyl/Ara ratio(Y2), uronic acid(Y3), $\beta$-glucan(Y4) and total sugars(Y5) of hemicelluloses separated from rice bran. The Coefficients of determination(R2) in various models ranged from 0.8626 to 0.9319. Yield increased with increased NaOH concentration and extraction time. The optimum extraction conditions were NaOH concentration at 2.45M and extraction time of 24.2 h. Predicted values at the optimized conditions were acceptable, compared with experimental values. The structural characteristics of an optimum hemicellulose extract were explored. As a result, it showed that the surfaces of hemicellulose had a highly irregular reticulated structure. And also it was both small and large molecular particle in the hemicelluloses. Their average molecular weights were in the ranges $235{\sim}240$ kDa and $8.0{\sim}9.4kDa$, respectively.

Photodecomposition of Concentrated Ammonia over Nanometer-sized TiO2, V-TiO2, and Pt/V-TiO2 Photocatalysts

  • Choi, Hyung-Joo;Kim, Jun-Sik;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.581-588
    • /
    • 2007
  • To enhance the photodecomposition of concentrated ammonia into N2, Pt/V-TiO2 photocatalysts were prepared using solvothermal and impregnation methods. Nanometer-sized particles of 0.1, 0.5 and 1.0 mol% V-TiO2 were prepared solvothermally, and then impregnated with 1.0 wt% Pt. The X-ray diffraction (XRD) peaks assigned to V2O5 at 30.20 (010) and Pt metal at 39.80 (111) and 46.20 (200) were seen in the 1.0 wt% Pt/ 10.0 mol% V-TiO2. The particle size increased in the order: pure TiO2, V-TiO2 and Pt/V-TiO2 after thermal treatment at 500 °C, while their surface areas were in the reverse order. On X-ray photoelectron spectroscopy (XPS), the bands assigned to the Ti2p3/2 and Ti2p1/2 of Ti4+-O were seen in all the photocatalysts, and the binding energies increased in the order: TiO2 < Pt/V-TiO2 < V-TiO2. The XPS bands assigned to the V2p3/2 (517.85, 519.35, and 520.55 eV) and V2p1/2 (524.90 eV) in the V3+, V4+ and V5+ oxides appeared over V-TiO2, respectively, while the band shifted to a lower binding energy with Pt impregnation. The Pt components of Pt/ V-TiO2 were identified at 71.60, 73.80, 75.00 and 76.90 eV, which were assigned to metallic Pt 4f7/2, PtO 4f7/2, PtO2 4f7/2, and PtO 4f5/2, respectively. The UV-visible absorption band shifted closer towards the visible region of the spectrum in V-TiO2 than in pure TiO2 and; surprisingly, the Pt/V-TiO2 absorbed at all wavelengths from 200 to 800 nm. The addition of vanadium generated a new acid site in the framework of TiO2, and the medium acidic site increased with Pt impregnation. The NH3 decomposition increased with the amount of vanadium compared to pure TiO2, and was enhanced with Pt impregnation. NH3 decomposition of 100% was attained over 1.0 wt% Pt/1.0 mol% V-TiO2 after 80 min under illumination with 365 nm light, although about 10% of the ammonia was converted into undesirable NO2 and NO. Various intermediates, such as NO2, -NH2, -NH and NO, were also identified in the Fourier transform infrared (FT-IR) spectra. From the gas chromatography (GC), FT-IR and GC/mass spectroscopy (GC/MS) analyses, partially oxidized NO and NO2 were found to predominate over V-TiO2 and pure TiO2, respectively, while both molecules were reduced over Pt/V-TiO2.

Study on Peridynamic Interlayer Modeling for Multilayered Structures (가상 절점을 이용한 적층 구조물의 페리다이나믹 층간 결합 모델링 검토)

  • Ahn, Tae Sik;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.389-396
    • /
    • 2017
  • Peridynamics has been widely used in the dynamic fracture analysis of brittle materials. Recently, various crack patterns(compact region, floret, Hertz-type crack, etc.) of multilayered glass structures in experiments(Bless et al. 2010) were implemented with a bond-based peridynamic simulation(Bobaru et al.. 2012). The actual glass layers are bound with thin elastic interlayer material while the interlayer is missing from the peridynamic model used in the previous numerical study. In this study, the peridynamic interlayer modeling for the multilayered structures is proposed. It requires enormous computational time and memory to explicitly model very thin interlayer materials. Instead of explicit modeling, fictitious peridynamic particles are introduced for modeling interlayer materials. The computational efficiency and accuracy of the proposed peridynamic interlayer model are verified through numerical tests. Furthermore, preventing penetration scheme based on short-range interaction force is employed for the multilayered structure under compression and verified through parametric tests.

Isolation Method of Mushroom Infesting Pests from Mushroom-Growing Compost (버섯배지에서 버섯해충류 분리방법)

  • Lee, Heung-Su;Kim, Kyu-Jin;Song, Geun-Woo;Kim, Jin-Ho
    • The Korean Journal of Mycology
    • /
    • v.27 no.4 s.91
    • /
    • pp.289-292
    • /
    • 1999
  • We investigated the isolation method of mushroom infesting pests, Lycoriella mali, Coboldia fuscipes, Histiostoma sp. from mushroom-growing compost. Sugar solution of different densities (0, 10, 20, 30, 40, 50%) was tested to provide a means of seperating mushroom pests from the compost media. Thus, 40% sugar solution was suitable for isolation. The sieve size to entrap the pests was $30{\sim}140$ mesh; Lycoriella mali was trappped mainly $30{\sim}65$ mesh sieve, Coboldia fuscipes was caught mainly $30{\sim}100$ mesh sieve, Histiostoma sp. was trapped mainly $65{\sim}140$ mesh sieve. An isolation procedure was as follows; The infested compost was disintegrated in water and poured onto a set of 16, 30, 80, 140-mesh sieve. The material caught in the sieve is added in 40% sugar solution and then most compost particle were massed at the bottom while the supernatant contains mushroom pests. The upperlayer material was poured into a Seperatory funnel and the sediment at the bottom is drained off. The remaining material are washed off examination dish for study.

  • PDF