• Title/Summary/Keyword: Particle

Search Result 16,047, Processing Time 0.042 seconds

Influence of Particle Size of Quartz on the Strength of Porcelain Body (자기질 요지의 강도에 미치는 석영입도의 영향)

  • 이은상;김진영
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.3
    • /
    • pp.209-216
    • /
    • 1984
  • The influence of the particle size of quartz and the change of cooling rate to the strength of conventional triaxial porcelain was studied, . The results indicate that 1. The residual quartz content was increased by particle size increasing. And the strength was increased by increas-ing residual quartz content which increased the total stress in the specimen. But the influence of residual quartz was lessened by the extent of crack between quartz particle and glass matrix 2. In order to increase the strength of the body fast cooling is suitable to small quartz particle and slow cooling is suitable to large quartz particle.

  • PDF

ENERGY ON A PARTICLE IN DYNAMICAL AND ELECTRODYNAMICAL FORCE FIELDS IN LIE GROUPS

  • Korpinar, Talat;Demirkol, Ridvan Cem
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.265-280
    • /
    • 2018
  • In this study, we firstly define equations of motion based on the traditional model Newtonian mechanics in terms of the Frenet frame adapted to the trajectory of the moving particle in Lie groups. Then, we compute energy on the moving particle in resultant force field by using geometrical description of the curvature and torsion of the trajectory belonging to the particle. We also investigate the relation between energy on the moving particle in different force fields and energy on the particle in Frenet vector fields.

Analysis model for the pneumatic solid processing system in non-uniform particle size condition (불균일 입도를 가지는 기류식 고체 처리 시스템을 위한 해석모델)

  • Choi, Donghwan;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.229-231
    • /
    • 2015
  • In pneumatic reactor, hydrodynamic relation between gas and solid is important and particle size has a significant effect on this relation. In this reason, we analyzed drying and calcine process with a corrected model by considering the effect of the particle size distribution(PSD) with different seven particle groups by particle size.

  • PDF

Strategic Games for Particle Survival in Rao-Blackwellized Particle Filter for SLAM (Rao-Blackwellized 파티클 필터에서 파티클 생존을 위한 전략 게임)

  • Kwak, No-San;Kita, Nobuyuki;Yokoi, Kazuhito
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.97-104
    • /
    • 2009
  • Recently, simultaneous localization and mapping (SLAM) approaches employing Rao-Blackwellized particle filter (RBPF) have shown good results. However, due to the usage of the accurate sensors, distinct particles which compensate one another are attenuated as the RBPF-SLAM continues. To avoid this particle depletion, we propose the strategic games to assign the particle's payoff which replaces the importance weight in the current RBPF-SLAM framework. From simulation works, we show that RBPF-SLAM with the strategic games is inconsistent in the pessimistic way, which is different from the existing optimistic RBPF-SLAM. In addition, first, the estimation errors with applying the strategic games are much less than those of the standard RBPF-SLAM, and second, the particle depletion is alleviated.

  • PDF

A Study on the Dispersion of Fuel Particles in the Homogeneous Turbulent Flow Field (균일 난류 유동장내에서 연료입자의 퍼짐에 관한 연구)

  • 김덕줄;최연우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1330-1337
    • /
    • 1994
  • This study is to predict the lateral dispersion of the particles with time in a vertical pipe. Particle is released downward and located in the center of a pipe through which stationary, homogeneous turbulent air is flowing. We assume that gas turbulence velocities have a Gaussian probability density distribution and the presence of particle is not to alter turbulent structures. Particle trajectory is computed by numerically integrating the particle Lagrangian equation of motion, with a random sampling to determine the fluctuating air velocity experienced by each particle, which considered inertia effect and crossing-trajectories effect. The result shows characterestics of particle dispersion according to flow field condition and droplet size by using the parameters and scales, which expressed characterestics of flow field and particle. Predictions agree reasonably with experimental data.

Particle size distributions and concentrations above radiators in indoor environments: Exploratory results from Xi'an, China

  • Chen, Xi;Li, Angui
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.237-245
    • /
    • 2015
  • Particulate matter in indoor environments has caused public concerns in recent years. The objective of this research is to explore the influence of radiators on particle size distributions and concentrations. The particle size distributions as well as concentrations above radiators and in the adjacent indoor air are monitored in forty-two indoor environments in Xi'an, China. The temperatures, relative humidity and air velocities are also measured. The particle size distributions above radiators at ten locations are analyzed. The results show that the functional difference of indoor environments has little impact on the particle size distributions above radiators. Then the effects of the environmental parameters (particle concentrations in the adjacent indoor air, temperatures, relative humidities and air velocities) on particle concentrations above radiators are assessed by applying multiple linear regression analysis. Three multiple linear regression models are established to predict the concentrations of $PM_{10}$, $PM_{2.5}$ and $PM_1$ above radiators.

The effect of process parameters on copper powder particle size and shape produced by electrolysis method

  • Boz, Mustafa;Hasheminiasari, Masood
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.151-162
    • /
    • 2013
  • In this study, an electrolyzing device for the production of metal powders was designed and fabricated. The production of copper powders was performed using a variety of current densities, anode-cathode distances and power removal times. The effect of these parameters on powder particle size and shape was determined. Particle size was measured using a laser diffraction unit while the powder shape was determined by SEM. Experimental results show that an increase in current density leads to a decrease in powder particle size. In addition particle shape changed from globular dendritic to acicular dendritic with increasing the current density. Distance between the cathode and anode also showed a similar influence on powder particle size and shape. An increase in time of powder removal led to an increase in powder particle size, as the shape changed from acicular dendritic to globular dendritic.