• 제목/요약/키워드: Partial shading

검색결과 60건 처리시간 0.027초

A Study on Effects of Partial Shading on PV System applied to the Offshore Plant

  • Lee, Ji Young;Yang, Hyang Kweon;Oh, Jin Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권2호
    • /
    • pp.152-158
    • /
    • 2015
  • Unlike photovoltaic systems installed on land, photovoltaic systems applied to the offshore plant have the characteristic that is installed in a limited space. For single point mooring plant, it is advantageous in terms of a reliable power supply to be installed in different directions of photovoltaic panels, because it is not possible to identify the position of the sun by rotation of the plant itself. Differences of installation angle between photovoltaic panels make a difference of the intensity of radiation irradiated on each photovoltaic panel, and it brings loss of generation quantity due to the partial shading. In order to provide a photovoltaic system suitable for offshore plant, the modeling which contains multiple photovoltaic panels controlled by single controller is performed. Then, it was examined how the output characteristics of the photovoltaic system change about the difference of the intensity of radiation that varies depending on the altitude of the sun. Finally, through the simulation, a development model of the photovoltaic system which is suitable for offshore plant is suggested.

태양광 발전시스템의 새로운 하이브리드 MPPT (A Novel Hybrid MPPT Control for Photovoltaic System)

  • 김수빈;조영민;김형진;송승호;최주엽;최익;이영권
    • 한국태양에너지학회 논문집
    • /
    • 제35권2호
    • /
    • pp.43-52
    • /
    • 2015
  • The performance of a photovoltaic array is affected by temperature, solar insolation, partial shading effect, and array configuration. Maximum power point tracking(MPPT) techniques are employed in photovoltaic systems to make full utilization of the PV array output power which depends on solar irradiation and ambient temperature. As much as MPPT is important in photovoltaic systems, many MPPT techniques have been developed. In this paper, several major existing MPPT methods are comparatively analyzed and novel hybrid MPPT algorithm is proposed. The proposed hybrid MPPT algorithm is developed in combination with traditional MPPT methods to complement each other for improving performance and mitigating partial shading effects. The proposed algorithm is implemented and validated using MATLAB/Simulink simulation tool.

Humpback Whale Assisted Hybrid Maximum Power Point Tracking Algorithm for Partially Shaded Solar Photovoltaic Systems

  • Premkumar, Manoharan;Sumithira, Rameshkumar
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1805-1818
    • /
    • 2018
  • This paper proposes a novel hybrid maximum power point tracking (MPPT) algorithm combining a Whale Optimization Algorithm (WOA) and the conventional Perturb & Observation (P&O) to track/extract the highest amount of power from a solar photovoltaic (SPV) system working under partial shading conditions (PSCs). The proposed hybrid algorithm is based on a WOA which predicts the initial global peak (GP) and is followed by P&O in the final stage to achieve a quicker convergence to a GP. Thus, this hybrid algorithm overcomes the computational burden encountered in a standalone WOA, grey wolf optimization (GWO) and hybrid GWO reported in the literature. The conventional algorithm searches for the maximum power point (MPP) in the predicted region by the WOA. The proposed MPPT technique is modelled and simulated using MATLAB/Simulink for simulating an environment to check its effectiveness in accurately tracking the MPP during the GP region. This hybrid algorithm is compared with a standalone WOA, GWO and hybrid GWO. From the simulating results, it is shown that the proposed algorithm offers high tracking performance and that it increases the output power level of a SPV system under partial shading. The algorithm also verified experimentally on various PSCs.

Moth-Flame Optimization-Based Maximum Power Point Tracking for Photovoltaic Systems Under Partial Shading Conditions

  • Shi, Ji-Ying;Zhang, Deng-Yu;Xue, Fei;Li, Ya-Jing;Qiao, Wen;Yang, Wen-Jing;Xu, Yi-Ming;Yang, Ting
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1248-1258
    • /
    • 2019
  • This paper presents a moth-flame optimization (MFO)-based maximum power point tracking (MPPT) method for photovoltaic (PV) systems. The MFO algorithm is a new optimization method that exhibits satisfactory performance in terms of exploration, exploitation, local optima avoidance, and convergence. Therefore, the MFO algorithm is quite suitable for solving multiple peaks of PV systems under partial shading conditions (PSCs). The proposed MFO-MPPT is compared with four MPPT algorithms, namely the perturb and observe (P&O)-MPPT, incremental conductance (INC)-MPPT, particle swarm optimization (PSO)-MPPT and whale optimization algorithm (WOA)-MPPT. Simulation and experiment results demonstrate that the proposed algorithm can extract the global maximum power point (MPP) with greater tracking speed and accuracy under various conditions.

Design and Application of a Photovoltaic Array Simulator with Partial Shading Capability

  • Beser, Ersoy
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1259-1269
    • /
    • 2019
  • PV system performance is dependent on different irradiations and temperature values in addition to the capability of the employed PV inverter / maximum power point tracker (MPPT) circuit or algorithm. Therefore, it would be appropriate to use a PV simulator capable of producing identical repeatable conditions regardless of the weather to evaluate the performance of inverter / MPPT circuits and algorithms. In accordance with this purpose, a photovoltaic (PV) array simulator is presented in this paper. The simulator is designed to generate current-voltage (I-V) and power-voltage (P-V) curves of a PV panel. Series connected cascaded modules constitute the basic part of the simulator. This feature also allows for the modeling of PV arrays since the number of modules can be increased and high voltage values can be reached with the simulator. In addition, the curves obtained at the simulator output become similar to the actual curves of sample PV panels with an increase in the number of modules. In order to show the validity of the proposed simulator, it was simulated for various situations such as panels under full irradiance and partial shading conditions. After completing simulations, experiments were realized to support the simulation study. Both simulation and experimental results show that the proposed simulator will be very useful for researchers to carry out PV studies under laboratory conditions.

복수의 스트링을 포함한 태양광 패널에 적용 가능한 차동 전력 조절기의 조사량 적응형 동작 알고리즘 (Irradiation-Adaptive Operating Algorithm of Differential Power Processing Module for Photovoltaic Panels Including Multiple Strings)

  • 김근욱;김민아;정지훈
    • 전력전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.63-73
    • /
    • 2022
  • The differential power processor (DPP) system is used to prevent a decrease in the total power generation due to the partial shading of photovoltaic modules. Compared with traditional series strings and full power processing (FPP) converter solutions, the DPP converter system shows advantages in terms of modularization process, volume, and transformation losses. However, the system has a limitation in that the power generation process of differential power processors produces lower power under certain irradiation conditions. This paper proposes a structure and operating algorithm for differential power processing modules that can use a single power converter for multiple strings. The operational algorithm for the differential power regulators allows the maximum power generation to be maintained in comparison with conventional series-connected and differential power processing methods even under various partial shading conditions. The operation algorithm of the proposed DPP is verified by Matlab/Simulink simulations.

결정질 실리콘 및 CuInxGa(1-x)Se2 모듈의 부분음영에 따른 태양전지 특성 변화 및 바이패스 다이오드의 작동 메커니즘 분석 (Analysis of Mechanism for Photovoltaic Properties and Bypass Diode of Crystalline Silicon and CuInxGa(1-x)Se2 Module in Partial Shading Effect)

  • 이지은;배수현;오원욱;강윤묵;김동환;이해석
    • 한국재료학회지
    • /
    • 제25권4호
    • /
    • pp.196-201
    • /
    • 2015
  • This paper presents the impact of partial shading on $CuIn_xGa_{(1-x)}Se_2(CIGS)$ photovoltaic(PV) modules with bypass diodes. When the CIGS PV modules were partially shaded, the modules were under conditions of partial reverse bias. We investigated the characterization of the bypass diode and solar cell properties of the CIGS PV modules when these was partially shaded, comparing the results with those for a crystalline silicon module. In crystalline silicon modules, the bypass diode was operated at a partial shade modules of 1.67 % shading. This protected the crystalline silicon module from hot spot damage. In CIGS thin film modules, on the other hand, the bypass diode was not operated before 20 % shading. This caused damage because of hotspots, which occurred as wormlike defects in the CIGS thin film module. Moreover, the bypass diode adapted to the CIGS thin film module was operated fully at 60% shading, while the CIGS thin film module was not operated under these conditions. It is known that the bypass diode adapted to the CIGS thin film module operated more slowly than that of the crystalline silicon module; this bypass diode also failed to protect the module from damage. This was because of the reverse saturation current of the CIGS thin film, $1.99{\times}10^{-5}A/cm^2$, which was higher than that of crystalline silicon, $8.11{\times}10^{-7}A/cm^2$.

MPPT Control and Architecture for PV Solar Panel with Sub-Module Integrated Converters

  • Abu Qahouq, Jaber A.;Jiang, Yuncong;Orabi, Mohamed
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1281-1292
    • /
    • 2014
  • Photovoltaic (PV) solar systems with series-connected module integrated converters (MICs) are receiving increased attention because of their ability to create high output voltage while performing local maximum power point tracking (MPPT) control for individual solar panels, which is a solution for partial shading effects in PV systems at panel level. To eliminate the partial shading effects in PV system more effectively, sub-MICs are utilized at the cell level or grouped cell level within a PV solar panel. This study presents the results of a series-output-connection MPPT (SOC-MPPT) controller for sub-MIC architecture using a single sensor at the output and a single digital MPPT controller (sub-MIC SOC-MPPT controller and architecture). The sub-MIC SOC-MPPT controller and architecture are investigated based on boost type sub-MICs. Experimental results under steady-state and transient conditions are presented to verify the performance of the controller and the effectiveness of the architecture.

PV 시스템의 부분 음영을 대비한 새로운 하이브리드 MPPT 기법 (A Novel Hybrid MPPT Method to Mitigate Partial Shading Effects in PV System)

  • 김동균;김수빈;조영민;최익;조상윤;이영권;최주엽
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 추계학술대회 논문집
    • /
    • pp.21-22
    • /
    • 2015
  • The maximum power point of a photovoltaic array alters with changing atmospheric conditions, temperature conditions, shadow conditions, so it is required to track maximum power point. As much as MPPT(Maximum Power Point Tracking) is important in photovoltaic systems, many MPPT techniques have been developed. In this paper, several major existing MPPT methods are comparatively analyzed and novel hybrid MPPT algorithm is proposed. The proposed hybrid MPPT algorithm is developed in combination with traditional MPPT methods to complement each other for improving performance and mitigating partial shading effects. The proposed algorithm is validated by using PISIM simulation tool and experiment in 3kW system.

  • PDF

태양광 모듈형 전력조절기를 위한 양방향 벅-부스트 포워드 컨버터 (Bi-Directional Buck-Boost Forward Converter for Photovoltaic Module type Power Conditioning System)

  • 김경탁;전영태;박종후
    • 전력전자학회논문지
    • /
    • 제21권4호
    • /
    • pp.335-342
    • /
    • 2016
  • This paper proposes an energy storage-assisted, series-connected module-integrated power conversion system that integrates a photovoltaic power conditioner and a charge balancing circuit. In conventional methods, a photovoltaic power conditioner and a cell-balancing circuit are needed for photovoltaic systems with energy storage devices, but they cause a complex configuration and high cost. Moreover, an imbalanced output voltage of the module-integrated converter for PV panels can be a result of partial shading. Partial shading can lead to the fault condition of the boost converter in shaded modules and high voltage stresses on the devices in other modules. To overcome these problems, a bidirectional buck-boost converter with an integrated magnetic device operating for a charge-balancing circuit is proposed. The proposed circuit has multiple secondary rectifiers with inductors sharing a single magnetic core, which works as an inductor for the main bidirectional charger/discharger of the energy storage. The secondary rectifiers operate as a cell-balancing circuit for both energy storage and the series-connected multiple outputs of the module-integrated converter. The operating principle of the cell-balancing power conversion circuit and the power stage design are presented and validated by PSIM simulation for analysis. A hardware prototype with equivalent photovoltaic modules is implemented for verification. The results verify that the modularized photovoltaic power conversion system in the output series with an energy storage successfully works with the proposed low-cost bidirectional buck-boost converter comprising a single magnetic device.