• Title/Summary/Keyword: Partial premixed

Search Result 37, Processing Time 0.025 seconds

NOx Formation Characteristics in Diffusion, Partial Premixed and Premixed Jet flame (가스 연료의 연소 방식에 따른 NOx 생성 특성)

  • Choi, Young-Ho;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.155-164
    • /
    • 1998
  • Numerical analysis was performed with multicomponent transport properties and detailed reaction mechanisms for axisymetric 2-D CH4 jet diffusion, partial premixed, premixed flame. Calculations were carried out twice with C2-Full Mechanism including prompt NO reaction in addition to the above C2-Thermal NO Mechanism. The role of thermal NO mechanism and prompt NO mechanism on each flame's NO production is investigated by using the numerical result. The NOx production of each flame were evaluated Quantitatively in terms of the NOx emission index

  • PDF

Flame Characteristics of Diesel Spray in the Condition of Partial Premixed Compression Ignition (부분 예혼합 압축착화 조건에서 디젤분무의 화염특성)

  • Bang, Joong Cheol;Park, Chul Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.2
    • /
    • pp.24-31
    • /
    • 2012
  • Diesel engines exhaust much more NOx(Nitrogen Oxides) and PM(Particulate Matter) than gasoline engines, and it is not easy to reduce both NOx and PM simultaneously because of the trade-off relation between two components. This study investigated flame characteristics of the partial premixed compression ignition known as new combustion method which can reduce NOx and PM simultaneously. The investigation was performed through the analysis of the flame images taken by a high speed camera from the visible engine which is the modified single cylinder diesel engine. The results obtained through this investigation are summarized as follows; (1) The area of the luminous yellow flame was reduced due to the decrease of flame temperature and even distribution of temperature. (2) The darkish yellow flame zone caused by the shortage of the remaining oxygen after the middle stage of combustion was considerably reduced. (3) Since the ignition delay was shortened, the violent combustion did not occur and the combustion duration became shortened.

Experimental Investigation on premixed combustion Characteristics with suction & blow fans (송풍기와 폐풍기를 이용한 연소기내의 부분 예혼합화염 연소 특성에 관한 실험적 연구)

  • Kang, B.K.;Oh, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.143-148
    • /
    • 2001
  • We measured emission indices for $NO_x$, CO, temperature and radical characteristics for partially premixied flames formed by suction & blow fans air condition. At sufficiently high levels of partial premixing a double flame structure consisting of a rich premixed inner flame and outer diffusion flame was established similar to that previously observed in premixed flames. $NO_x$, Temperature, CO values were experimented with approximately constant air flow rate and decreasing equivalence ratios. The reduction in $NO_x$ and temperature at suction condition as compared with that for blow condition was approximately 20%, but on the contrary, CO emission was increased. In addition, We measured temperature distributions and found that temperature increased continuously with increasing partial premixing. We also estimated CH, $C_2$ radical intensity. CH and $C_2$ radicals provide evidence that, for the present measurement, CH and $C_2$ radicals intensity was associsated with their premixed component. And we observed stronger $C_2$, CH radicals intensity at suction conditions than blow conditions.

  • PDF

Experimental Investigation on Premixed Combustion Characteristics with Suction & Blow Fans (Suction과 blow fan을 이용한 연소기내의 부분 예혼합화염 연소 특성에 관한 실험적 연구)

  • Kang, Ki-Bal;Kim, Dong-Il;Oh, Sang-Heun
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.15-23
    • /
    • 2002
  • We measured emission indices for $NO_x$, CO, temperature and radical characteristics for partially premixied flames formed by suction & blow fans air condition. At sufficiently high levels of partial premixing a double flame structure consisting of a rich premixed inner flame and outer diffusion flame was established similar to that previously observed in premixed flames. $NO_x$, Temperature. CO concentration were experimented with approximately constant air flow rate and decreasing equivalence ratios. The reduction in $NO_x$, and temperature at suction condition as compared with that for blow condition was approximately 20%, but on the contrary, CO emission was increased. In addition, We measured temperature distributions and found that temperature increased continuously with increasing partial premixing. We also estimated CH, $C_2$ radical intensity. CH and $C_2$ radicals provide evidence that, for the present measurement, CH and $C_2$ radicals intensity was associsated with their premixed component. And we observed stronger $C_2$, CH radicals intensity at suction conditions than blow conditions.

  • PDF

Flame Structure of a Liftoff Non-Premixed Turbulent Hydrogen Jet with Coaxial Air (부상된 수소 난류확산화염의 화염구조)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.699-708
    • /
    • 2009
  • To understand hydrogen jet liftoff height, the stabilization mechanism of turbulent lifted jet flames under non-premixed conditions was studied. The objectives were to determine flame stability mechanisms, to analyze coexistence of two different flame structure, and to characterize the lifted jet at the flame stabilization point. Hydrogen flow velocity varied from 100 to 300 m/s. Coaxial air velocity was changed from 12 to 20 m/s. Simultaneous velocity field and reaction zone measurements used, PIV/OH PLIF techniques with Nd:YAG lasers and CCD/ICCD cameras. Liftoff height decreased with the increase of fuel velocity. The flame stabilized in a lower velocity region next to the faster fuel jet due to the mixing effects of the coaxial air flow. The flame stabilization was related to turbulent intensity and strain rate assuming that combustion occurs where local flow velocity and turbulent flame propagation velocity are balanced. At the flame base, two different flame structures were found that was the partial premixed flames and premixed flame.

Numerical Modeling of Turbulent Nonpremixed Lifted Flames

  • Kim, Hoojoong;Kim, Yongmo;Ahn, Kook-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.167-172
    • /
    • 2004
  • The present study has focused on numerical investigation on the flame structure, flame lift-off and stabilization in the partially premixed turbulent lifted jet flames. Since the lifted jet flames have the partially premixed nature in the flow region between nozzle exit and flame base, level set approach is applied to simulate the partially premixed turbulent lifted jet flames for various fuel jet velocities and co-flow velocities. The flame stabilization mechanism and the flame structure near flame base are presented in detail. The predicted lift-off heights are compared with the measured ones.

The Role of Oxygen Atom in the NOx Formation of DME/Air Nonpremixed Flames (DME/Air 비예혼합화염의 NOx 생성에서 산소원자의 역할)

  • Kim, Tae-Hyun;Hwang, Cheol-Hong;Lee, Seung-Ro;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.9-18
    • /
    • 2009
  • The NOx emission characteristics of DME in counterflow nonpremixed flames were investigated numerically, and brief experiments were carried out to compare the flame shapes and NOx emissions with those of $C_{3}H_{8}$ and $C_{2}H_{6}$. The DME flames were calculated using Kaiser's mechanism, while the $C_{2}H_{6}$ flames were calculated using the $C_3$ mechanism. These mechanisms were combined with the modified Miller-Bowman mechanism for the analysis of NOx. Experimental results show that DME flame has the characteristics of partial premixed flame and the flame length becomes very shorter compared with general hydrocarbon fuels and then, the NOx emission of DME is low as much as 60 % of $C_{3}H_{8}$. In the calculated results of counterflow nonpremixed flames, the $EI_{NO}$ of DME nonpremixed flame is low as much as 50 % of the $C_{2}H_{6}$ nonpremixed flame. The cause of $EI_{NO}$ reduction is attributed mainly to the characteristics of partial premixed flame due to the existence of O atom in DME and partly to the O-C bond in DME, instead of C-C bond in hydrocarbon fuels.

  • PDF

Fundamental Studies on NOx Emission Characteristics in a Dimethyl Ether/Air Nonpremixed Flame (DME/Air 비예혼합화염의 NOx 생성 특성에 관한 기초 연구)

  • Kim, Tae-Hyun;Kim, Jong-Hyun;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1973-1978
    • /
    • 2008
  • The NOx emission characteristics of DME in counterflow nonpremixed flames were investigated numerically, and brief experiments were carried out to compare the flame shapes and NOx emissions with those of $C_3H_8$ and $C_2H_6$. The DME flames were calculated using Kaiser's mechanism, while the $C_2H_6$ flames were calculated using the $C_3$ mechanism. These mechanisms were combined with the modified Miller-Bowman mechanism for the analysis of NOx. Experimental results show that DME flame has the characteristics of partial premixed flame and the flame length becomes very shorter compared with general hydrocarbon fuels and then, the NOx emission of DME is low as much as 60% of $C_3H_8$. In the calculated results of counterflow nonpremixed flames, the EINO of DME nonpremixed flame is low as much as 50% of the $C_2H_6$ nonpremixed flame. The cause of $EI_{NO}$ reduction is attributed mainly to the characteristics of partial premixed flame due to the existence of O atom in DME and partly to the O-C bond in DME, instead of C-C bond in hydrocarbon fuels.

  • PDF

Flame Structure and Light Emission Characteristics in Coaxial Laminar Partially Premixed $CH_{4}/Air$ Flames;Effect of Central Fuel Injection (이중동축 메탄/공기 층류 부분 예혼합화염에서의 화염구조와 자발광 배출 특성;안쪽관 연료주입의 영향)

  • Oh, Jeong-Seog;Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1116-1121
    • /
    • 2004
  • In this study, the effect of central fuel injection on a coaxial laminar $CH_{4}/air$ flame was experimented at the defined premixing condition(${\Phi}=1.90$, ${\sigma}=50/75/100%$, x/D=10). The partial premixing parameter are the equivalence ratio that total fuel is fixed at 200cc/min, the fuel split degree which means the percentage of fuel entering the outer tube to the total amount, and the mixing distance indicating the nonreactant mixture's homogeneity between inner tube top and burner exit. The object is to investigate the flame structure and chemiluminescence characteristics of laminar partial premixed flame as changing mixing parameters. The radical signal was acquired from ICCD camera and PMT. Each intensity was compared with Abel inverted value for measuring the effect of background light on the peak signal location and the intensity at central preheat zone. The results show that the peak location of each radical was broaden as the fuel split degree increasing because the mixing quality was enhanced. and $OH^{\ast}$ is a good indicator for flame front between reaction and preheat zone. At last $CH_{2}^{\ast}$ has the same tendency with $CH^{\ast}$ but a thinner reaction zone than $CH^{\ast}$ due to a rapid decay on the burned gas side.

  • PDF

Combustion characteristics and gas interchangeability of natural gas with various compositions (다양한 성분을 가지는 천연가스의 연소특성 및 호환성)

  • kim, Jong-min;Yu, Byeonghun;Lee, Seungro;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.89-91
    • /
    • 2012
  • In this study, an investigation into the gas interchangeability and combustion characteristics of natural gas with various compositions was performed. In order to suggest the appropriateness of gas interchangeability using the specific gravity(SG) and the Wobbe index(WI) values, combustion characteristics, which include incomplete combustion and flame lifting, were measured and observed for the upper and lower limits using the gas-oven as a domestic partial-premixed type appliance and the condensing boiler as a domestic premixed type appliance.

  • PDF