• Title/Summary/Keyword: Partial least squares regression

Search Result 188, Processing Time 0.026 seconds

Milling tool wear forecast based on the partial least-squares regression analysis

  • Xu, Chuangwen;Chen, Hualing
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.57-74
    • /
    • 2009
  • Power signals resulting from spindle and feed motor, present a rich content of physical information, the appropriate analysis of which can lead to the clear identification of the nature of the tool wear. The partial least-squares regression (PLSR) method has been established as the tool wear analysis method for this purpose. Firstly, the results of the application of widely used techniques are given and their limitations of prior methods are delineated. Secondly, the application of PLSR is proposed. The singular value theory is used to noise reduction. According to grey relational degree analysis, sample variable is filtered as part sample variable and all sample variables as independent variables for modelling, and the tool wear is taken as dependent variable, thus PLSR model is built up through adapting to several experimental data of tool wear in different milling process. Finally, the prediction value of tool wear is compare with actual value, in order to test whether the model of the tool wear can adopt to new measuring data on the independent variable. In the new different cutting process, milling tool wear was predicted by the methods of PLSR and MLR (Multivariate Linear Regression) as well as BPNN (BP Neural Network) at the same time. Experimental results show that the methods can meet the needs of the engineering and PLSR is more suitable for monitoring tool wear.

Simultaneous Kinetic Spectrophotometric Determination of Sulfite and Sulfide Using Partial Least Squares (PLS) Regression

  • Afkhami, Abbas;Sarlak, Nahid;Zarei, Ali Reza;Madrakian, Tayyebeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.863-868
    • /
    • 2006
  • The partial least squares (PLS-1) calibration model based on spectrophotometric measurement, for the simultaneous determination of sulfite and sulfide is described. This method is based on the difference between the rate of the reaction of sulfide and sulfite with Malachite Green in pH 7.0 buffer solution and at 25 ${^{\circ}C}$. The absorption kinetic profiles of the solutions were monitored by measuring the decrease in the absorbance of Malachite Green at 617 nm in the time range 10-180 s after initiation of the reactions with 2 s intervals. The experimental calibration matrix for partial least squares (PLS-1) calibration was designed with 24 samples. The cross-validation method was used for selecting the number of factors. The results showed that simultaneous determination could be performed in the range 0.030-1.5 and 0.030-1.2 $\mu$g m$L ^{-1}$ for sulfite and sulfide, respectively. The proposed method was successfully applied to simultaneous determination of sulfite and sulfide in water samples and whole human blood.

Pathway and Network Analysis in Glioma with the Partial Least Squares Method

  • Gu, Wen-Tao;Gu, Shi-Xin;Shou, Jia-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3145-3149
    • /
    • 2014
  • Gene expression profiling facilitates the understanding of biological characteristics of gliomas. Previous studies mainly used regression/variance analysis without considering various background biological and environmental factors. The aim of this study was to investigate gene expression differences between grade III and IV gliomas through partial least squares (PLS) based analysis. The expression data set was from the Gene Expression Omnibus database. PLS based analysis was performed with the R statistical software. A total of 1,378 differentially expressed genes were identified. Survival analysis identified four pathways, including Prion diseases, colorectal cancer, CAMs, and PI3K-Akt signaling, which may be related with the prognosis of the patients. Network analysis identified two hub genes, ELAVL1 and FN1, which have been reported to be related with glioma previously. Our results provide new understanding of glioma pathogenesis and prognosis with the hope to offer theoretical support for future therapeutic studies.

Analysis of Carbonization Behavior of Hydrochar Produced by Hydrothermal Carbonization of Lignin and Development of a Prediction Model for Carbonization Degree Using Near-Infrared Spectroscopy (열수 탄화 공정을 거친 리그닌 하이드로차(hydrochar)의 탄화 거동 분석과 근적외선 분광법을 이용한 예측 모델 개발)

  • HWANG, Un Taek;BAE, Junsoo;LEE, Taekyeong;HWANG, Sung-Yun;KIM, Jong-Chan;PARK, Jinseok;CHOI, In-Gyu;KWAK, Hyo Won;HWANG, Sung-Wook;YEO, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.213-225
    • /
    • 2021
  • In this paper, we investigated the carbonization characteristics of lignin hydrochar prepared by hydrothermal carbonization and established a model for predicting the carbonization degree using near-infrared spectroscopy and partial least squares regression. The carbon content of the hydrothermally carbonized lignin at the temperature of 200 ℃ was higher by approximately 3 wt% than that of the untreated sample, and the carbon content tended to gradually increase as the heating time increased. Hydrothermal carbonization made lignin more carbon-intensive and more homogeneous by eliminating the microparticles. The discriminant and predictive models using near-infrared spectroscopy and partial least squares regression approppriately determined whether hydrothermal carbonization has been applied and predicted the carbon content of hydrothermal carbonized lignin with high accuracy. In this study, we confirmed that we can quickly and nondestructively predict the carbonization characteristics of lignin hydrochar manufactured by hydrothermal carbonization using a partial least squares regression model combined with near-infrared spectroscopy.

Partial Least Squares Analysis on Near-Infrared Absorbance Spectra by Air-dried Specific Gravity of Major Domestic Softwood Species

  • Yang, Sang-Yun;Park, Yonggun;Chung, Hyunwoo;Kim, Hyunbin;Park, Se-Yeong;Choi, In-Gyu;Kwon, Ohkyung;Cho, Kyu-Chae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • Research on the rapid and accurate prediction of physical properties of wood using near-infrared (NIR) spectroscopy has attracted recent attention. In this study, partial least squares analysis was performed between NIR spectra and air-dried specific gravity of five domestic conifer species including larch (Larix kaempferi), Korean pine (Pinus koraiensis), red pine (Pinus densiflora), cedar (Cryptomeria japonica), and cypress (Chamaecyparis obtusa). Fifty different lumbers per species were purchased from the five National Forestry Cooperative Federations of Korea. The air-dried specific gravity of 100 knot- and defect-free specimens of each species was determined by NIR spectroscopy in the range of 680-2500 nm. Spectral data preprocessing including standard normal variate, detrend and forward first derivative (gap size = 8, smoothing = 8) were applied to all the NIR spectra of the specimens. Partial least squares analysis including cross-validation (five groups) was performed with the air-dried specific gravity and NIR spectra. When the performance of the regression model was expressed as $R^2$ (coefficient of determination) and root mean square error of calibration (RMSEC), $R^2$ and RMSEC were 0.63 and 0.027 for larch, 0.68 and 0.033 for Korean pine, 0.62 and 0.033 for red pine, 0.76 and 0.022 for cedar, and 0.79 and 0.027 for cypress, respectively. For the calibration model, which contained all species in this study, the $R^2$ was 0.75 and the RMSEC was 0.37.

AI Technology Analysis using Partial Least Square Regression

  • Choi, JunHyeog;Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.109-115
    • /
    • 2020
  • In this paper, we propose an artificial intelligence(AI) technology analysis using partial least square(PLS) regression model. AI technology is now affecting most areas of our society. So, it is necessary to understand this technology. To analyze the AI technology, we collect the patent documents related to AI from the patent databases in the world. We extract AI technology keywords from the patent documents by text mining techniques. In addition, we analyze the AI keyword data by PLS regression model. This regression model is based on the technique of partial least squares used in the advanced analyses such as bioinformatics, social science, and engineering. To show the performance of our proposed method, we make experiments using AI patent documents, and we illustrate how our research can be applied to real problems. This paper is applicable not only to AI technology but also to other technological fields. This also contributes to understanding other various technologies by PLS regression analysis.

Predicting Site Quality by Partial Least Squares Regression Using Site and Soil Attributes in Quercus mongolica Stands (신갈나무 임분의 입지 및 토양 속성을 이용한 부분최소제곱 회귀의 지위추정 모형)

  • Choonsig Kim;Gyeongwon Baek;Sang Hoon Chung;Jaehong Hwang;Sang Tae Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.23-31
    • /
    • 2023
  • Predicting forest productivity is essential to evaluate sustainable forest management or to enhance forest ecosystem services. Ordinary least squares (OLS) and partial least squares (PLS) regression models were used to develop predictive models for forest productivity (site index) from the site characteristics and soil profile, along with soil physical and chemical properties, of 112 Quercus mongolica stands. The adjusted coefficients of determination (adjusted R2) in the regression models were higher for the site characteristics and soil profile of B horizon (R2=0.32) and of A horizon (R2=0.29) than for the soil physical and chemical properties of B horizon (R2=0.21) and A horizon (R2=0.09). The PLS models (R2=0.20-0.32) were better predictors of site index than the OLS models (R2=0.09-0.31). These results suggest that the regression models for Q. mongolica can be applied to predict the forest productivity, but new variables may need to be developed to enhance the explanatory power of regression models.

Investigation of Partial Least Squares (PLS) Calibration Performance based on Different Resolutions of Near Infrared Spectra

  • Chung, Hoe-Il;Choi, Seung-Yeol;Choo, Jae-Bum;Lee, Young-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.647-651
    • /
    • 2004
  • Partial Least Squares (PLS) calibration performance has been systematically investigated by changing spectral resolutions of near-infrared (NIR) spectra. For this purpose, synthetic samples simulating naphtha were prepared to examine the calibration performance in complex chemical matrix. These samples were composed of $C_6-C_9$ normal paraffin, iso-paraffin, naphthene, and aromatic hydrocarbons. NIR spectra with four different resolutions of 4, 8, 16, and 32$cm^{-1}$ were collected and then PLS regression was performed. For PLS calibration, five different group compositions (such as total paraffin content) and six different pure components (such as benzene concentration) were selected. The overall results showed that at least 8$cm^{-1}$ resolution was required to resolve the complex chemical matrix such as naphtha. It was found that the influence of resolution on the PLS calibration was varied by the spectral features of a component.

Development of Prediction Model for Moisture and Protein Content of Single Kernel Rice using Spectroscopy (분광분석법을 이용한 단립 쌀의 함수율 및 단백질 함량 예측모델 개발)

  • 김재민;최창현;민봉기;김종훈
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • The objectives of this study were to develop models to predict the contents of moisture and protein of single kernel of brown rice based on visible/NIR (near-infrared) spectroscopic technique. The reflectance spectra of rice were obtained in the range of the wavelength 400 to 2,500 nm with 2 nm intervals. Multiple linear regression(MLR) and partial least squares (PLS) were used to develop the models. The MLR model using the first derivative spectra(10 nm of gap) with Standard Normal Variate and Detrending (SNV and Drt.) preprocessing showed the best results to predict moisture content of the sin린e kernel brown rice. To predict the protein content of a single kernel of brown ricer the PLS model used the raw spectra with multiplicative scatter correction(MSC) preprocessing over the wavelength of 1,100~1,500 nm.

  • PDF

Use of partial least squares analysis in concrete technology

  • Tutmez, Bulent
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.173-185
    • /
    • 2014
  • Multivariate analysis is a statistical technique that investigates relationship between multiple predictor variables and response variable and it is a very commonly used statistical approach in cement and concrete industry. During model building stage, however, many predictor variables are included in the model and possible collinearity problems between these predictors are generally ignored. In this study, use of partial least squares (PLS) analysis for evaluating the relationships among the cement and concrete properties is investigated. This regression method is known to decrease the model complexity by reducing the number of predictor variables as well as to result in accurate and reliable predictions. The experimental studies showed that the method can be used in the multivariate problems of cement and concrete industry effectively.