• Title/Summary/Keyword: Partial discharge source

Search Result 98, Processing Time 0.026 seconds

Study on the Synthesis of HoN Nanoparticles and Magnetocaloric Effect as Magnetic Refrigerant for Hydrogen Re-Liquefaction (수소재액화를 위한 자기냉매용 HoN 나노분말 합성 및 자기열량효과 연구)

  • Kim, Dongsoo;Ahn, Jongbin;Jang, Sehoon;Chung, Kookchae;Kim, Jongwoo;Choi, Chuljin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.594-601
    • /
    • 2014
  • Rare-earth (RE) nitrides can be used as magnetocaloric materials in low temperature. They exhibit ferromagnetism and have Curie temperature in the region from 6 to 70 K. In this study, Holmium nitride (HoN) nano particles were prepared through plasma arc discharge technique and their magnetocaloric properties were studied. Nitrogen gas ($N_2$) was employed as an active element for arc discharge between two electrodes maintained at a constant current. Also, it played an important role not only as a reducing agent but also as an inevitable source of excited nitrogen molecules and nitrogen ions for the formation of HoN phase. Partial pressure of $N_2$ was systematically varied from 0 to 28,000 Pa in order to obtain single phase of HoN with minimal impurities. Magnetic entropy change (${\Delta}S_m$) was calculated with data set measured by PPMS (Physical Property Measurement System). The as-synthesized HoN particles have shown a magnetic entropy change ${\Delta}S_m$) of 27.5 J/kgK in applied field of 50,000 Oe at 14.2 K thereby demonstrating its ability to be applied as an effective magnetic refrigerant towards the re-liquefaction of hydrogen.

A STUDY ON THE RELATIONSHIP BETWEEN PLASMA CHARACTERISTICS AND FILM PROPERTIES FOR MgO BY PULSED DC MAGNETRON SPUTTERING

  • Nam, Kyung H.;Chung, Yun M.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.35-35
    • /
    • 2001
  • agnesium Oxide (MgO) with a NaCI structure is well known to exhibit high secondary electron emission, excellent high temperature chemical stability, high thermal conductance and electrical insulating properties. For these reason MgO films have been widely used for a buffer layer of high $T_c$ superconducting and a protective layer for AC-plasma display panels to improve discharge characteristics and panel lifetime. Up to now MgO films have been synthesized by lE-beam evaporation, Molecular Beam Epitaxy (MBE) and Metalorganic Chemical Vapor Deposition (MOCVD), however there have been some limitations such as low film density and micro-cracks in films. Therefore magnetron sputtering process were emerged as predominant method to synthesis high density MgO films. In previous works, we designed and manufactured unbalanced magnetron source with high power density for the deposition of high quality MgO films. The magnetron discharges were sustained at the pressure of O.lmtorr with power density of $110W/\textrm{cm}^2$ and the maximum deposition rate was measured at $2.8\mu\textrm{m}/min$ for Cu films. In this study, the syntheses of MgO films were carried out by unbalanced magnetron sputtering with various $O_2$ partial pressure and specially target power densities, duty cycles and frequency using pulsed DC power supply. And also we investigated the plasma states with various $O_2$ partial pressure and pulsed DC conditions by Optical Emission Spectroscopy (OES). In order to confirm the relationships between plasma states and film properties such as microstructure and secondary electron emission coefficient were analyzed by X-Ray Diffraction(XRD), Transmission Electron Microscopy(TEM) and ${\gamma}-Focused$ Ion Beam (${\gamma}-FIB$).

  • PDF

Degradation Diagnosis by Void Defects Using a Neural Network (신경망을 이용한 보이드 결함에 의한 열화진단)

  • 최재관;김성홍;김재환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.940-945
    • /
    • 1998
  • In this paper, we obtained the data, which is required in training the neural network and diagnosing the degradation degree, by introducing the AE detection that is effective method in ordinary degradation diagnosis on activation. Aa the results of generalization tests by appling neural network to the unknown AE patterns obtained from two kinds of specimen, firstly as to evaluate an objective performance of neural network, the recognition ration for no-void specimen and 1[mm] -void specimen are appeared to be 98.9% and 92.5%, respectively. Also, in the evaluation of the adaptability of neural network with a new type of 0.2[mm] -void specimen, it is confirmed that the result appears to be 64% of recognition ratio at 94% of confidence interval coefficient in expectation output 0.2. On the other hand, the recognition capability of the neural network was confirmed by data from no-void and 1[mm] void specimen. The results prove the promising possibility of the application of ANN to discriminate specific void affecting as main degradation source at partial discharge condition in insulator containing multi-void by accummulated data base.

  • PDF

Comparing and Analysis for Classification of PD Source Generated by Electrical Tree (전기트리시 발생하는 부분방전원 분류기법 비교 분석)

  • Yoon, Jae-Hun;Kim, Byong-Chul;Kang, Seong-Hwa;Cheong, Su-Hyeon;Lim, Kee-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.464-465
    • /
    • 2007
  • Solid insulation exposed to voltage is degraded by electrical tree process. And the degradation of the insulation is accelerated by voltage application. For this experimental, specimen of electrical tree model is made by XLPE (cross-linked polyethylene). And the size of the specimen is $7*5*7\;mm^3$. Distance of needle and plane is 2 mm. Voltages applied for acceleration test are 12 kV to 15 kV. And distribution characteristic of degraded stage is studied too. As a PD detecting and data process, discharge data acquire from PD detecting system (Biddle instrument). The system presents statistical distribution as phase resolved. Moreover the processing time of electrical tree is recorded to know the speed of degradation according to voltage.

  • PDF

Molecular Beam Epitaxial Growth of Oxide Single Crystal Films

  • Yoon, Dae-Ho;Yoshizawa, Masahito
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.508-508
    • /
    • 1996
  • ;The growth of films have considerable interest in the field of superlattice structured multi-layer epitaxy led to realization of new devices concepts. Molecular beam epitaxy (MBE) with in situ observation by reflection high-energy electron diffraction (RHEED) is a key technology for controlled layered growth on the atomic scale in oxide crystal thin films. Also, the combination of radical oxygen source and MBE will certainly accelerate the progress of applications of oxides. In this study, the growth process of single crystal films using by MBE method is discussed taking the oxide materials of Bi-Sr-Ca-Cu family. Oxidation was provided by a flux density of activated oxygen (oxygen radicals) from an rf-excited discharge. Generation of oxygen radicals is obtained in a specially designed radical sources with different types (coil and electrode types). Molecular oxygen was introduced into a quartz tube through a variable leak valve with mass flowmeter. Corresponding to the oxygen flow rate, the pressure of the system ranged from $1{\;}{\times}{\;}10^{-6}{\;}Torr{\;}to{\;}5{\;}{\times}{\;}10^{-5}$ Torr. The base pressure was $1{\;}{\times}{\;}10^{-10}$ Torr. The growth of Bi-oxides was achieved by coevaporation of metal elements and oxygen. In this way a Bi-oxide multilayer structure was prepared on a basal-plane MgO or $SrTiO_3$ substrate. The grown films compiled using RHEED patterns during and after the growth. Futher, the exact observation of oxygen radicals with MBE is an important technology for a approach of growth conditions on stoichiometry and perfection on the atomic scale in oxide. The oxidization degree, which is determined and controlled by the number of activated oxygen when using radical sources of two types, are utilized by voltage locked loop (VLL) method. Coil type is suitable for oxygen radical source than electrode type. The relationship between the flux of oxygen radical and the rf power or oxygen partial pressure estimated. The flux of radicals increases as the rf power increases, and indicates to the frequency change having the the value of about $2{\times}10^{14}{\;}atoms{\;}{\cdots}{\;}cm^{-2}{\;}{\cdots}{\;}S^{-I}$ when the oxygen flow rate of 2.0 seem and rf power 150 W.150 W.

  • PDF

Analysis and Implementation of the Capacitive Idling SEPIC (용량성 아이들링 SEPIC의 분석 및 구현)

  • 최동훈;조경현;나희수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.39-44
    • /
    • 2003
  • As the portable electronic equipments are developed and popularized, the batteies are more important. To prolong life of the equipments, engineers demand to have batteries of high-power density and they are used to use Li-ion batteries popularly Li-ion batteries are better than conventional batteries, Ni-cd, about power density per volume and weight, but they have a fault that discharge voltage of them goes down. In order to maximize life of the Li-ion batterries, we have to use a converter which is suitable for the characteristic of Li-ion batteries. Therefore, capacitive idling SEPIC(Single Ended Primary Inductance Converter) that is derived from the SEPIC topology is proposed as a source of the Portable low-power applications. The converter has characteristics of buck-boost porformance. Besides, that makes it possible to increase the switching frequency by partial soft commutation of power switches through adding a diode and a switch. This paper is presented the characteristics, DC voltage conversion ratio, circuits of operation modes, of the converter and it is analized and implemented.

Fabrication and Electrochemical Characterization of All Solid-State Thin Film Micro-Battery by in-situ Sputtering (In-situ 스퍼터링을 이용한 잔고상 박막 전지의 제작 및 전기화학적 특성 평가)

  • Jeon Eun Jeong;Yoon Young Soo;Nam Sang Cheol;Cho Won Il;Shin Young Wha
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.115-120
    • /
    • 2000
  • All solid-state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of $Li/LiPON/V_2O_5Pt$. The effect of various oxygen partial pressure on the electrochemical properties of vanadium oxide thin films formed by d.c. reactive sputtering deposition were investigated. The vanadium oxide thin film with deposition condition of $20\%\;O_2/Ar$ ratio showed good cycling behavior. In in-siか process, the LiPON electrolyte was deposited on the $V_2O_5$ films without breaking vacuum by r.f. magnetron sputtering at room temperature. After deposition of the amorphous LiPON, the Li metal films were grown by a thermal evaporator in a dry room. The charge-discharge cycle measurements as a function of current density and voltage variation revealed that the $Li/LiPON/V_2O_5$ thin film had excellent rechargeable properly when current density was $7{\mu}A/cm^2$. and cut-off voltage was between 3.6 and 2.7V In practical experiment, a stopwatch ran on this $Li/LiPON/V_2O_5$ thin film micro-battery. This result means that thin film micro-battery fabricated by in-siか process is a promising for power source for electronic devices.

Influence of Ammonia and Dissolved Oxygen Concentrations on Nitrite Accumulation in a MBR (MBR 반응조에서 아질산염 축적에 미치는 암모니아와 용존산소 농도의 영향 연구)

  • Choi, In-Su;Wiesmann, Udo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.922-929
    • /
    • 2007
  • The complete oxidation of ammonia to nitrate is a distinctive two-step process divided into the oxidation of ammonia to nitrite(nitritation) by Nitrosomonas and the oxidation of nitrite to nitrate(nitratation) by Nitrobacter. The nitrogen removal via nitrite accumulation offers several advantages such as saving costs for aeration, saving carbon source and finally reduction of sludge discharge. In this work a suspended bioreactor coupled with membrane filtration(MBR) was used to find the process conditions of nitrite build-up. The MBR enables to reach sufficient nitrifying bacteria in the bioreactor, although the autotrophic bacteria can be easily washed out due to their lower growth rate. The dissolved oxygen concentration $c'_{O2}$ and ammonia concentration $c_{NH3}$ in the reactor were varied and investigated as parameters for nitrite accumulation. As a result the higher ammonia concentration in the reactor is very effective for starting nitrite build-up and the effect was strengthened in combination with lower dissolved oxygen concentration. With lower $c'_{O2}<0.3$ $mgL^{-1}$ $O_2$ and high $c_{NH3}=6.3\sim14.9$ $mgL^{-1}$ $NH_3N$ the 74% of the nitrite accumulation was achieved. Specially, it was found that the nitrite accumulation could occur not only in biofilm reactor as many references showed but also in the membrane bioreactor carried out in this study.