• 제목/요약/키워드: Partial cavitation analysis

검색결과 8건 처리시간 0.021초

저소음 프로펠러 설계를 위한 부분공동 유동의 점성 및 비점성 수치해석 비교 연구 (Comparative Study on Viscous and Inviscid Analysis of Partial Cavitating Flow for Low Noise Propeller Design)

  • 김지혜;안병권;박철수;김건도
    • 한국음향학회지
    • /
    • 제33권6호
    • /
    • pp.358-365
    • /
    • 2014
  • 선박용 프로펠러가 수중에서 빠른 속도로 회전할 때, 날개 표면의 국부적인 압력이 낮아짐에 따라 불가피하게 여러 형태의 공동이 발생한다. 이러한 공동현상은 근본적으로 날개 단면의 기하학적 형상 특성과 수동력학적 운용조건에 의해 결정되며, 결과적으로 선박 프로펠러에서 유기되는 수중방사소음은 공동의 발생특성과 직결된다고 할 수 있다. 따라서 저소음 프로펠러 설계를 위해서는 날개 단면의 형상에 따라 발생하는 공동과 그에 따른 소음특성을 이론 및 실험을 통해 정량적으로 평가할 수 있어야 한다. 본 연구에서는 저소음 프로펠러의 설계단계에서부터 적용이 가능한 부분공동성능 해석법 개발 및 날개단면 형상정보 도출을 목표로 선박용 프로펠러 날개 단면에서 발생하는 부분공동 다상 유동의 비점성 수치해석을 수행하였다. 또한 점성해석 상용프로그램인 FLUENT에서 제공하는 난류 및 공동 모델 조합에 따른 결과를 살펴보았으며, 점성 및 비점성 해석 결과를 비교, 평가 하였다.

Cavitation Instabilities of Hydrofoils and Cascades

  • Tsujimoto, Yoshinobu;Watanabe, Satoshi;Horiguchi, Hironori
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.38-46
    • /
    • 2008
  • Studies on cavitation instabilities of hydrofoils and cascades are reviewed to obtain fundamental understandings of the instabilities observed in turbopump inducers. Most of them are based on the stability analysis of two-dimensional inviscid cavitating flow. The most important finding of the analysis is that the cavitation instabilities depend only on the mean cavity length. For a hydrofoil, the characteristic length is the chord length and partial/transitional cavity oscillation occurs with shorter/longer cavity than 75% of the chord length. For cascades, the characteristic length is the blade spacing and various modes of instabilities are predicted when the mean cavity is longer than 65% of the spacing. In the last part, rotating choke is shown to occur when the cavity becomes longer than the spacing.

Cavitation Characteristics of a Pump-turbine Model by CFD Analysis

  • Singh, Patrick Mark;Chen, Chengcheng;Chen, Zhenmu;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제18권4호
    • /
    • pp.49-55
    • /
    • 2015
  • The pumped storage plant operates with quick change of the discharge as well as quick changes between pump mode and turbine mode. This study focuses on the cavitation analysis of a pump-turbine model because in turbo-machinery, cavitation can reduce the performance and shorten service life. The pump-turbine model system consists of 7 blades, 20 stay vanes (including tongue) and 20 guide vanes. This study adopts the Rayleigh-Plesset model as a cavitation model, which illustrates cavitation by using the air volume fraction method. The pump mode and turbine mode at the operating condition of partial loading, normal and excessive loading are analyzed to investigate the cavitation performance of the pump-turbine. It was observed that this pump-turbine design showed very good cavitation characteristics with no cavitation bubbles in all operating conditions. Overall value of air volume fraction of both mode at different operating condition are lower than 1, which confirms low possibility of cavitation occurrence at current situation.

Ogive-Cylinder 주위와 Venturi에서의 캐비테이션 전산 유동해석 (NUMERICAL ANALYSIS OF CAVITATION FLOW AROUND OGIVE-CYLINDER AND VENTURI)

  • 이장춘;안보경;김동훈;김찬기;박원규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.130-133
    • /
    • 2007
  • A two-phase method in CFD has been developed and is applied to model the cavitation flow. The governing equation system is two-phase Navier-Stokes equation, comprised of the mixture mass, momentum and liquid-phase mass equation. It employs an implicite, dual time, preconditioned algorithm using finite difference scheme in curvilineal coordinates and Chien ${\kappa}-{\varepsilon}$ turbulence equation. The experimental cavitating flows around ogive-cylinder and venturi type objects are employed to test the solver. To prove the capabilities of the solver, several three-dimentional examples are presented.

  • PDF

초공동 수중운동체 주위 공동 특성과 추력 전산 해석 (Numerical Analysis of Cavity Characteristics and Thrust for Supercavitating Underwater Vehicle)

  • 김동현;박원규
    • 한국해양공학회지
    • /
    • 제31권1호
    • /
    • pp.8-13
    • /
    • 2017
  • Cavitation is used in various fields. This study examined the drag reduction of an underwater vehicle using cavitation. In this study, the natural partial cavitation analysis results were verified using CFD code with the Navier-Stokes equation based on a mixture model. The momentum and continuity equations in the mixture phase were separately solved in the liquid and vapor phases. The solver employs an implicit preconditioning algorithm in curvilinear coordinates. The results of a computational analysis showed good agreement with the experiment. A computational analysis was also performed on the supercavity. The study investigated the cavity characteristics and drag of an underwater vehicle and studied the speed required to achieve a supercavity. Finally, a 1DOF analysis was carried out to investigate the thrust system for a supercavity. As a result, one of the methods for determining a suitable thrust system for a supercavitating underwater vehicle was presented.

Internal Flow Characteristics in the Draft Tube of a Francis Turbine

  • Wei, Qingsheng;Zhu, Baoshan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.618-626
    • /
    • 2012
  • Suppression of abnormal flow phenomena in the Francis hydro turbine is very important to improve the turbine performance. Especially, as cavitation and cavitation surge makes serious problems when the turbine is operated in the range of partial flow rate, optimum method of suppressing the abnormal flow characteristics is required necessarily. Moreover, as swirl flow in the draft tube of the Francis turbine decreases pressure at the inlet of the draft tube, suppression of the swirl flow can be an useful method of suppressing the occurrence of cavitation. In order to clarifying the possibility of suppressing the swirl flow by J-Groove in the draft tube, a series of CFD analysis has been conducted in the range of partial load, designed condition and excessive flow rate of a Francis turbine. A kind of J-Groove is designed and applied to the draft tube of the Francis hydro turbine model. The pressure contours, circumferential velocity vectors and vortex core regions in the draft tube are compared by the conditions with or without J-Groove. In addition, a group of data about the velocity in the draft is presented to show the influence of J-Groove.

ESWL 장치에 의한 방사음 및 파쇄효율에 미치는 캐비테이션의 영향 (Cavitation Effects on Radiated Sounds and Break Efficiency Induced by Piezoelectric Extracorporeal Shock Wave Lithotripter)

  • 장윤석
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권2호
    • /
    • pp.205-210
    • /
    • 2001
  • 결석 파쇄에 ES지 장치가 이용되기 시작한 이래, 장치의 성능 및 장치에서 발생시킨 충격파가 생체에 미치는 영향등에 관한 연구가 다수 행해지고 있다. 그 중의 하나가 충격파가 전달되는 곳에는 항상 거론되는 캐비테이션 문제이다. 본 연구에서는 압전식 ESWL 장치로 대상물을 파쇄한다는 가정하에, 그 때의 매질을 캐비테이션이 미치는 영향과 관련지어 둘로 구분한다. 그것에 따라 각 매질에서의 방사음을 관측하고, 매질에 따른 파쇄효율과의 관계를 분석한 결과를 제시한다. 본 논문의 결과들은 캐비테이션 기포의 발생율이 작은 탈기수쪽이 방사음에 있어서도 분산성이 작고, 파쇄효율면에 있어서도 안정된 점을 확실히 나타내고 있다.

  • PDF

축대칭 실린더형상 주위 부분공동 유동의 전산해석 (Numerical Analysis of Partial Cavitaing Flow Past Axisymmetric Cylinders)

  • 김봉수;이병우;박원규;정철민
    • 대한기계학회논문집B
    • /
    • 제33권2호
    • /
    • pp.69-78
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many hydraulic engineering systems, such as pump, turbine, nozzle, injector, etc. In the present work, a solver for cavitating flow has been developed and applied to simulate the flows past axisymmetric cylinders. Governing equations are the two-phase Navier-Stokes equations, comprised of continuity equation of liquid and vapor phase. The momentum equation is in the mixture phase. The solver employed an implicit, dual time, preconditioned algorithm in curvilinear coordinates. Computations were carried out for three axisymmetric cylinders: hemispherical, ogive, and caliber-0 forebody shape. Then, the present calculations were compared with experiments and other numerical results to validate the present solver. Also, the code has shown its capability to accurately simulate the re-entrant jet phenomena and ventilated cavitation. Hence, it has been found that the present numerical code has successfully accounted for cavitating flows past axisymmetric cylinders.