• Title/Summary/Keyword: Partial Opening Valve

Search Result 12, Processing Time 0.016 seconds

Effects of the Blockage Ratio of a Valve Disk on Loss Coefficient in a Butterfly Valve (밸브 디스크 차단비 변화가 버터플라이밸브의 손실계수에 미치는 영향에 관한 실험적 연구)

  • Rho, Byung-Joon;Choi, Hee-Joo;Lee, Jee-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.39-46
    • /
    • 2008
  • The loss coefficient of the butterfly valve which allows partial opening of the valve at closed position and is applicable to the small-sized pipe system with the diameter of 1 inch was measured for the variation of the valve disk blockage ratio. Two different types of the valve disk configuration to adjust the blockage ratio were considered. One was the solid type valve disk of which the diameter was changed into the smaller size rather than the pipe diameter, and the other was the perforate type valve disk on which some holes were perforated. The results from two types of valve disk were compared to identify their characteristics in the loss coefficient distributions. The loss coefficient and the controllable angle of the valve disk were decreased exponentially with the decrease of the blockage ratio. In addition, the perforate valve disk had the effect on the higher loss coefficient rather than the solid type valve disk.

A Two-Dimensional Study of Transonic Flow Characteristics in Steam Control Valve for Power Plant

  • Yonezawa, Koichi;Terachi, Yoshinori;Nakajima, Toru;Tsujimoto, Yoshinobu;Tezuka, Kenichi;Mori, Michitsugu;Morita, Ryo;Inada, Fumio
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • A steam control valve is used to control the flow from the steam generator to the steam turbine in thermal and nuclear power plants. During startup and shutdown of the plant, the steam control valve is operated under a partial flow conditions. In such conditions, the valve opening is small and the pressure deference across the valve is large. As a result, the flow downstream of the valve is composed of separated unsteady transonic jets. Such flow patterns often cause undesirable large unsteady fluid force on the valve head and downstream pipe system. In the present study, various flow patterns are investigated in order to understand the characteristics of the unsteady flow around the valve. Experiments are carried out with simplified two-dimensional valve models. Two-dimensional unsteady flow simulations are conducted in order to understand the experimental results in detail. Scale effects on the flow characteristics are also examined. Results show three types of oscillating flow pattern and three types of static flow patterns.

Development of a Two-Step Main Oxidizer Shut-off Valve (2단계 개방 연소기 산화제 개폐밸브 개발)

  • Hong, Moongeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.704-710
    • /
    • 2017
  • The supply of the liquid oxygen into a rocket combustor is simply controlled by the 'on' and 'off' positions of a main oxidizer shut-off valve. However, the partially opened position of a three-position valve can control and optimize the engine start transients by regulating the liquid oxygen flow rate during the start-up of the engine. In this paper, the design and performances of a three-position pneumatic poppet valve, which is intended to be employed in liquid rocket engines, have been presented.

Effects of Intake and Exhaust Valve Timing on Combustion and Emission Characteristics of Lean-Burn Direct-Injection LPG Engine (직접분사식 희박연소 LPG엔진에서 흡배기 밸브시기가 연소 및 배기특성에 미치는 영향)

  • Park, Cheolwoong;Kim, Taeyoung;Cho, Seehyoen;Oh, Seungmook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • In order to meet the enforced emission regulations and reduce fuel consumption, various new technologies are employed in engines. The problem of NOx emissions under a lean mixture condition should be solved, because a lean-burn direct-injection engine can realize stable lean combustion with a stratified mixture, which results in improvements in fuel economy and emissions. This study investigated the effects of intake and exhaust valve timing changes on the performance and emission characteristics of a lean-burn LPG direct-injection engine. Under a partial-load operating condition without throttling, an increase in the intake valve opening led to an increase in NOx emissions due to an increase in the amount of excess air. The fuel consumption deteriorated with an increase in the exhaust valve opening due to a decrease in the expansion work and an increase in the pumping loss.

A Numerical Analysis for Fuel Consumption by Improvement of Intake/Exhaust Valve Timing in a Common Rail Diesel Engine for a Generator (커먼레일 디젤엔진의 흡배기밸브 타이밍 개선을 통한 연비절감에 대한 수치해석적 연구)

  • Kim, Seung Chul;Kim, Chung Kyun
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.32-38
    • /
    • 2017
  • The common rail diesel engine used in this study uses mechanically driven camshaft for the operation of intake and exhaust valves, and the timing of valve opening and closing is fixed according to the operating conditions of the vehicle. However, the electric generator engine operates at a constant speed and partial load. Therefore, in order to optimize the design of common rail diesel engine for power generation, the characteristics of diesel combustion and emissions according to the change of valve timing were examined and calculated in terms of fuel economy. The valve timing of the diesel engine influenced the combustion characteristics by changing the intake and exhaust flow and it was considered that the fuel efficiency of the generator could be improved.

Experimental Study on the Safety of a Valve for a Special Gas Cylinder (특수가스용기용 밸브의 안전성에 관한 실험적 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.3
    • /
    • pp.14-19
    • /
    • 2013
  • This paper presents an experimental study on the safety of a valve for a special gas cylinder. The test valves that were randomly dismantled from the special gas cylinder were experimented on the gas leakage and operation safeties. The crack, wear and deformation of the valve body, screw thread, safety disk, vent hole, stem and handle components that may affect to the gas leakage safety of a used valve were not found in this experimental study. A painted handle of a valve was partly stripped from the coated surface, and the surface of PT screw of a used valve body was rusted. But, these paint and rust problems do not affected to the gas leakage safety of used valves. And there was no gas leakage in the dismantled valve, and the permanent deformation and partial scars of a valve stem and O-rings were observed on the rubbing surfaces. Thus, the valve seat and O-rings are recommended to be replaced for a gas leakage safety of a dismantled valve. And it is necessary to repair and inspect handle fastening forces for a safe opening and closing operations of a valve.

Effect of Controlling Exhaust Valve Timing on Engine Efficiency in LIVC and EIVC States in a 2-Cylinder Small Turbo Gasoline Engine (2기통 소형 터보가솔린엔진에서 배기 밸브 타이밍 제어에 따른 LIVC, EIVC 상태에서의 엔진 효율 영향)

  • Jang, Jinyoung;Woo, Youngmin;Shin, Youngjin;Ko, Ahyun;Jung, Yongjin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Han, Myunghoon
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • This study examines whether engine fuel efficiency is improved by optimization of the exhaust valve timing in a state where the intake valve timing has been optimized in a small turbo gasoline engine that has intake cams and exhaust cams with fixed valve opening periods. When the exhaust valve is opened late, the expansion stroke is longer, and the efficiency can be improved. A 2-cylinder turbo gasoline engine with 0.8 liters of displacement and an MPI (Multi Point Injection) fuel system was used. The engine was operated at 1,500 and 3,000 rpm, and the load conditions included a partial load of 50 N·m and a high load of 70 N·m. Data was recorded as the exhaust valve timing was controlled, and this was used to calculate the efficiency of combustion using a heat release, the fuel conversion efficiency, and the pumping loss. Results and the hydrocarbon concentrations in the exhaust gas were compared for each condition. Experiment results confirmed that additional fuel efficiency improvements are possible through exhaust valve timing control at 1,500 rpm and 50 N·m. However, in other operating conditions, fuel efficiency improvements could not be obtained through exhaust valve timing control because cases where the pumping loss and fuel/air mixture slip increased when the exhaust valve timing changed and the fuel efficiency declined.

Coronary Artery Fistula [Report of 2 Cases] (관상동맥루 2례 보)

  • 심성보
    • Journal of Chest Surgery
    • /
    • v.20 no.1
    • /
    • pp.202-208
    • /
    • 1987
  • Congenital coronary artery fistula is a rare condition, and with widespread use of cardiac catheterization, angiography and selective coronary arteriography are being recognized with increasing frequency. Fistula originating from the right coronary artery are more common then those from the left coronary artery. The fistula empties into the right side of the heart in 90% of the cases with the right ventricle being the most common recipient chamber followed by the right atrium and the pulmonary artery. Recently we experienced two cases of congenital coronary artery fistula which originated from the left coronary artery each other. The first case was 17 moth-old-male, who have had the symptoms of frequent URI, dyspnea and continuous murmur in physical examination. The fistulous communication was noted between the left circumflex coronary artery and the right ventricle with aneurysmal dilation of RV wall. The proximal opening of the fistulous tract was directly close with partial aneurysmorrhaphy of RV wall. Also the termination site of fistulous tract in RV chamber was closed. The second case was 35-year-old female, who have had the symptom of exertional dyspnea and continuous murmur in physical examination. The tortuous and dilated fistulous tract was noted between the left anterior descending coronary artery and the pulmonary artery. The proximal opening of the fistula was ligated near the left anterior descending coronary artery with preservation of normal continuity of coronary artery. And the dilated tortuous vessel was excised. Also the terminal site in pulmonary artery was directly closed just above the pulmonic valve. Postoperative hospital courses of two patients were uneventful without any specific complications and discharged without problems.

  • PDF

An Empirical Model for Decoupling Control of a Variable Speed Refrigeration System (가변속 냉동시스템의 비간섭제어를 위한 실험적 모델)

  • Hua, Li;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.81-87
    • /
    • 2006
  • This paper deals with an empirical model for decoupling control to control the refrigeration system effectively. The conventional control schemes of the system are mainly focused on representative two control methods, superheat control and capacity control. The capacity control is basically conducted to respond partial loading conditions on the purpose of energy saving. The superheat control is mainly carried out to maintain maximum coefficient of performance (COP). In the variable speed refrigeration system, the capacity and the superheat are controlled by inverters and electronic expansion valves respectively for saving energy and improving cost performance. The capacity and superheat can not be controlled independently because of interfering loop when the compressor speed and opening angle electronic expansion valve is varied. Therefore, we suggest decoupling model to eliminate the interfering loop at first. Next, each transfer function in decoupling control model is obtained from number of experiments.

  • PDF

Performance Analysis of Indoor GHP for R410A Application (R410A 냉매를 이용한 GHP용 고효율 실내기 성능특성)

  • Lee, Jong-Ho;Park, Chang-Sug;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.447-452
    • /
    • 2009
  • The objectives of this paper are to study the effects of thermal and geometric conditions on the performance of indoor heat exchanger with R410A. This study carried out experimental and numerical analysis for indoor heat exchangers. In the experimental study, capacity of the indoor unit was estimated 8.3 kWh with the valve opening rate of 95% for the 50% partial operation condition. The air temperatures were measured using 80 thermocouples. This study also compared experimental data with the calculated data for the outlet temperature and the tube length. It is found that the relative errors between the experiment data and the calculated result are 4.2% and 0.5% for the outlet temperature and the tube length, respectively.

  • PDF