• Title/Summary/Keyword: Partial Elastohydrodynamic Lubrication Analysis

Search Result 5, Processing Time 0.019 seconds

The Lubrication Characteristics of a Rotary Compressor Used for Refrigeration and Air-conditioning Systems (Part III; Analysis of partial elastohydrodynamic lubrication on vane tip)

  • 조인성;오석형;정재연
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.138-145
    • /
    • 2001
  • The rolling piston type rotary compressor has been widely used for refrigeration and air-conditioning systems due to its compactness and high-speed operation. The present analysis is a part of research program directed toward maximizing these advantages of refrigerant compressors. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressors. Therefore, theoretical investigation of the lubrication characteristics of a rotary compressor used for refrigeration and air-conditioning systems is studied. Newton-Raphson method is used for the partial elastohydrodynamic lubrication analysis between vane and rolling piston in the rotary compressor. The results show that the rotational speed of a shaft and the discharge pressure influence significantly the friction force and the energy loss between vane and rolling piston.

Lubrication Characteristics Between the Vane and the Rolling Piston in a Rotary Compressor Used for Refrigeration and Air-Conditioning Systems

  • Jung, Jae-Youn;Oh, Seok-Hyung;Cho, Ihn-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.562-568
    • /
    • 2001
  • The rolling piston type-rotary compressor has been widely used for refrigeration and air-conditioning systems due to its compactness and high-speed operation. The present analysis is part of a research program directed toward maximizing the advantages of refrigerant compressors. The study of lubrication characteristics in critical sliding components is essential for the design of refrigerant compressors. Therefore, theoretical investigation of the lubrication characteristics of a rotary compressor used for refrigeration and air-conditioning systems was studied. The Newton-Raphson method was used for the partial elastohydrodynamic lubrication analysis between the vane and the rolling piston of a rotary compressor. The results showed that the rotational speed of a shaft and the discharge pressure significantly influence the friction force and the energy loss between the vane and the rolling piston.

  • PDF

Analysis of Line and Circular Contact Elastohydrodynamic Lubrication with Multigrid Multilevel Method (다중 격자 다중 차원법을 이용한 선접촉 또는 점접촉 탄성 유체 윤활 해석)

  • 장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.323-330
    • /
    • 1999
  • The conventional analysis for the numerical computation of fluid film thickness with elastic deformation of contact region. is performed by Newton-Rephson method for its 18st convergence characteristics. However, both high load and relatively low sliding velocity frequently make it impossible for Newton-Rahpson method to get both converged and stable solutions. In particular, this method cannot provide converged Solution under the condition of high load above 1.0 GPa which frequently occurs in line contact of EHL problem. Multigird multi-level method for the solver of non-linear partial differential equation including solid deformation is preferred to Newton-Rshpson method for better convergence and stability and is applied to line contact EHL behavior in this study.

  • PDF

The Lubrication Characteristics of Rotary Compressor for refrigeration & air-conditioning ( Part II ; Analysis of partial elastohydrodynamic lubrication on vane tip ) (냉동,공조용 로터리 콤프레서의 윤활 특성 제2보;베인선단부의 부분 탄성유체윤활해석)

  • 김진문;조인성;백일현;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.133-141
    • /
    • 1996
  • The rolling piston type rotary compressor has become one of the most successful types because of its compactness and high-speed operation. The analysis described here is part of a research program directed toward maximising these advantages in refrigerant compressors. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressors. Therefore, theoretical investigation of the lubrication characteristics of rotary compressor for refrigeration & air-conditioning system is studied. And the Newton-Raphson method is used for the EHI. analysis between vane and rolling piston in the rotary compressor. The results show that the rotational speed of shaft and the discharge pressure have an important effect upon the friction force and the energy loss between vane and rolling piston. This results give important basic data for the further lubrication analysis and design of the rotary compressor.

  • PDF

The Influence of the Vane on the Lubrication Characteristics Between the Vane and the Rolling Piston of a Rotary Compressor

  • Cho, Ihn-Sung;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2242-2249
    • /
    • 2006
  • The rolling piston type rotary compressor has been widely used for refrigeration and air-conditioning systems due to its compactness and high-speed operation. The present analysis is part of a research program directed toward maximizing the advantages of refrigerant compressors. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressors. Therefore, theoretical investigation of the lubrication characteristics of a rotary compressor being used for refrigeration and air-conditioning systems was investigated. The Newton-Raphson method was used for a partial elastohydrodynamic lubrication analysis between the vane and the rolling piston of a rotary compressor. The results demonstrated that the vane thickness and the center line position of the vane significantly influenced the friction force and the energy loss between the vane and the rolling piston.