• Title/Summary/Keyword: Part-Machine Grouping

Search Result 45, Processing Time 0.017 seconds

Cell Formation Considering the Minimization of Manufacturing Leadtime in Cellular Manufacturing Systems (셀룰러 생산시스템에서 생산 리드타임의 최소화를 고려한 셀 구성 방법)

  • Yim, Dong-Soon;Woo, Hoon-Shik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.4
    • /
    • pp.285-293
    • /
    • 2004
  • In this study, a machine grouping problem for the formation of manufacturing cells is considered. We constructed the problem as minimizing manufacturing leadtime consisting of parts' processing, moving, and waiting time. Specifically, the main objective of the defined problem is established as minimizing inter-cell traffic in order to minimize the part's moving time. In addition, to reduce the waiting time of parts, the load balance among cells is implicitly included as constraints. Since this problem is well known as NP-complete and cannot be solved in polynomial time, a genetic algorithm is implemented to obtain solutions. Also, a local optimization algorithm is applied in order to improve the solution by the genetic algorithm. Several experiments show that the suggested algorithms guarantee near optimal solutions in a few seconds.

Design of Gas Identification System with Hierarchical Rule base using Genetic Algorithms and Rough Sets (유전 알고리즘과 러프 집합을 이용한 계층적 식별 규칙을 갖는 가스 식별 시스템의 설계)

  • Bang, Yonug-Keun;Byun, Hyung-Gi;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1164-1171
    • /
    • 2012
  • Recently, machine olfactory systems as an artificial substitute of the human olfactory system are being studied actively because they can scent dangerous gases and identify the type of gases in contamination areas instead of the human. In this paper, we present an effective design method for the gas identification system. Even though dimensionality reduction is the very important part, in pattern analysis, We handled effectively the dimensionality reduction by grouping the sensors of which the measured patterns are similar each other, where genetic algorithms were used for combination optimization. To identify the gas type, we constructed the hierarchical rule base with two frames by using rough set theory. The first frame is to accept measurement characteristics of each sensor and the other one is to reflect the identification patterns of each group. Thus, the proposed methods was able to accomplish effectively dimensionality reduction as well as accurate gas identification. In simulation, we demonstrated the effectiveness of the proposed methods by identifying five types of gases.

DISEASE FORECAST USING MACHINE LEARNING ALGORITHMS

  • HUSSAIN, MOHAMMED MUZAFFAR;DEVI, S. KALPANA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1151-1165
    • /
    • 2022
  • Key drive of information quarrying is to digest liked information starting possible information. With the colossal amount of realities kept in documents, information bases, and stores, in the medical care area, it's inexorably significant, assuming excessive, arising compelling resources aimed at examination besides comprehension like information on behalf of the withdrawal of gen that might assistance in independent direction. Classification is method in information mining; it's characterized as per private, passing on item toward a specific course established happening it is likeness toward past instances of different substances trendy the data collection. In pre-owned recycled four Classification algorithm that incorporate Multi-Layer perception, KSTAR, Bayesian Network and PART to fabricate the grouping replicas arranged the malaria data collection and analyze the replicas, degree their exhibition through Waikato Environment for Knowledge Analysis introduced to Java Development Kit 8, then utilizations outfit's technique trendy promoting presentation of the arrangement methodology. The outcome perceived that Bayesian Network return most elevated exactness of 50.05% when working on followed by Multi-Layer perception, with 49.9% when helping is half, then, at that point, Kstar with precision of 49.44%, 49.5% when supporting individually and PART have lesser precision of 48.1% when helping, The exploration recommended that Bayesian Network is awesome toward remain utilized on Malaria data collection in our sanatoriums.

Fuzzy Clustering Model using Principal Components Analysis and Naive Bayesian Classifier (주성분 분석과 나이브 베이지안 분류기를 이용한 퍼지 군집화 모형)

  • Jun, Sung-Hae
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.485-490
    • /
    • 2004
  • In data representation, the clustering performs a grouping process which combines given data into some similar clusters. The various similarity measures have been used in many researches. But, the validity of clustering results is subjective and ambiguous, because of difficulty and shortage about objective criterion of clustering. The fuzzy clustering provides a good method for subjective clustering problems. It performs clustering through the similarity matrix which has fuzzy membership value for assigning each object. In this paper, for objective fuzzy clustering, the clustering algorithm which joins principal components analysis as a dimension reduction model with bayesian learning as a statistical learning theory. For performance evaluation of proposed algorithm, Iris and Glass identification data from UCI Machine Learning repository are used. The experimental results shows a happy outcome of proposed model.

Artificial Neural Network with Firefly Algorithm-Based Collaborative Spectrum Sensing in Cognitive Radio Networks

  • Velmurugan., S;P. Ezhumalai;E.A. Mary Anita
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1951-1975
    • /
    • 2023
  • Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.