• Title/Summary/Keyword: Part load operation

Search Result 228, Processing Time 0.029 seconds

Development of Bus Load Forecasting System based on Windows95 : Part I (윈도우즈95에 기초한 모선수요예측시스템의 개발(I))

  • Jeon, Dong-Hoon;Song, Seok-Ha;Lim, Joo-Il;Hwang, Kab-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.169-171
    • /
    • 1996
  • In this paper, we have developed bus load forecasting system (BUSLOF) based on Windows 95. It has been developed for the secure operation of electric power system. It forecasts regional load and bus load using regional distribution factor(RDF) and bus distribution factor (BDF) which are calculated from bus load in the past. It is equipped with graphic user interface(GUI) which enables a user to easily access to the system. The performance of the developed system is estimated in sample data.

  • PDF

Study on Load Following Characteristics of Generators during Start-up of Induction Motor Load in Isolated System (독립계통에서 유도전동기 부하의 기동시 발전기의 안정적 부하추종에 관한 연구)

  • Shin, Ho-Jeon;Huh, Jae-Sun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.80-85
    • /
    • 2015
  • Recently, not only in the Middle East and Southeast Asia but in African area, too, industrial plant construction is being actually done. But unlike in Korea, a lot of them are small-scale isolated industrial plants. And because of the characteristics of industrial plants, induction motors' load forms a large part. The influence of stability resulted from the maneuver and operation of induction motors' load may lead to serious result in the isolated system. This study analyzed it through mathematical modeling on induction motors' maneuver phenomena in the isolated system, realized a case system with the E-TAP program, and simulated load follow performances according to the control variables of a generator inside the isolated system.

An Overview on Standards for Seasonal Performance Evaluation of Multi-type Air Conditioners (멀티형 에어컨의 기간에너지소비효율 평가규격에 관한 연구)

  • 박윤철;문제명;홍주태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.91-100
    • /
    • 2004
  • Energy efficiency evaluation method for a multi-type air conditioning system still has not been developed. In this study, analysis on capacity range and evaluating method of standards for air conditioners was conducted with world-wide Standards. It is not a proper approach to use the standards for residential air conditioner to multi type air conditioners. Some difficulties and problems are commented in this study with overview of the standards. Through the analytic research, an evaluating method for multi type air conditioner was suggested with Integrated Part Load Value (IPLV). The suggested concept for evaluating energy efficiency during part load condition considers building load pattern and operating hours of the system at different locations. Load was weighted in IPLV to consider not only the concept of occurrence of outdoor temperature such as bin method but also operation hours of the system. An experiment about the IPLV was conducted with variable air volume ducted type air conditioning system and multi-type system through modified code tester to give a glance at quantitative value of the IPLV.

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

Thermohydrodynamic Lubrication Analysis of High Speed Journal Bearing Considering Variable Density and Specific Heat: Part I - Shaft Speed Effect (변화하는 밀도와 비열을 고려한 고속 저어널 베어링의 열유체 윤활해석 I-축 속고영향)

  • Chun, Sang-Myung;Jang, Si-Youl
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.287-292
    • /
    • 2001
  • Under the condition of variable density and specific heat, maximum pressure, maximum temperature, bearing load, friction and side leakage in high-speed journal bearing operation are examined. The results are compared with the calculation results under the conditions of constant density and specific heat, and variable density and constant specific heat. It is found that the condition of variable density and specific heat play important roles in determining friction and load of journal bearing at high speed operation.

  • PDF

Evaluation of Chiller On-Off Control of Partial Ice Storage System for Energy Saving in Cooling Operation (부분축열식 빙축열시스템의 냉방에너지소비 절약을 위한 냉동기 On-Off 제어기법의 평가)

  • 이경호;최병윤;이상렬;한승호
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.04a
    • /
    • pp.69-74
    • /
    • 2000
  • This paper describes an operation strategy of ice storage systems for energy saving during building cooling. In this study, chiller is assumed not having function of part load control. Thus, it is needed to adopt on-off control with the objective function of summed energy consumption for minimum energy consumption. A conventional control strategy compared with the chiller-on-off control is chiller-priority control. in this control chiller operates as its full capacity and ice storage meets the rest of the cooling load.

  • PDF

Creative Design of Large-Angle Pin Type Load Cell for the Overload Limiter of a Movable Crane (이동식크레인의 과부하방지장치용 광각도 핀형 로드셀의 창의적 설계)

  • Han, Dong Seop;Ha, Jeong Min;Han, Geun Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • An overload limiter is used to prevent its overturning accident during an operation of a movable crane. Recently the indirect measuring method, which measures hoisting load and overturning moment of overload limiter, demands instead of the existing method, which measures only hoisting load. The indirectly measuring method is how to conduct the hoisting load and overturning moment as measuring the load of hydraulic cylinder for a luffing driving of boom. So we need to develop the multi-angular pin type load cell with the measuring angle of ${\pm}10$ degree instead of the existing load cell with the measuring angle of ${\pm}2$ degree. In this study the finite element analysis is conducted to evaluate the effect of the aspect ratio of measuring cross section on the measuring limit of the load cell to develop the many-angular pin type load cell. For this investigation, the aspect ratio of measuring cross section and load applying angle were adopted as design parameters and the stresses of measuring part were evaluated for each parameter.

Optimization Power Management System for electric propulsion system (전기추진시스템용 OPMS 기법 연구)

  • Lee, Jong-Hak;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.923-929
    • /
    • 2019
  • The stability of the propulsion system is crucial for the autonomous vessel. Multiple power generation and propulsion systems should be provided for the stability of the propulsion system. High power generation capacity is calculated for stability, resulting in economical decline due to low load operation. To solve this problem, we need to optimize the power system. In this paper, an OPMS for electric propulsion ship is constructed. The OPMS consists of a hybrid power generation system, an energy storage system, and a control load system. The power generation system consists of a dual fuel engine, the energy storage system is a battery, and the control load system consists of the propulsion load, continuous load, intermittent load, cargo part load and deck machine load. The power system was constructed by modeling the characteristics of each system. For the experiment, a scenario based on ship operation was prepared and the stability and economical efficiency were compared with existing electric propulsion ships.

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(1) - Comparison of Throttling and Masking (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(1) - 스로틀링과 마스킹의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.156-165
    • /
    • 2014
  • This paper is the first investigation on the effect of flow control methods on the part load performance in a spark ignition engine. For comparison of the methods, two control devices, port throttling and masking, were applied to a conventional engine without any design change of the intake port. Steady flow evaluation shows that steady flow rates per unit opening area and swirl ratio are very low compared with the port throttling and saturated from mid-stage valve lift, however, swirl increases slightly as the lift is higher in case of 1/4 masking control. In the part load performance, the effect of simple port throttling on lean misfire limit expansion is limited and insufficient; on the other hand a masking improves the limit considerably without any port modification for increasing swirl. Also the results show that the intake flow control improves the combustion with following two mechanisms: stratification induced by the combination of the flow pattern and the fuel injection timing attribute to ignition ability and the intensified flow ensure fast burn. In addition fuel consumption reduces under the flow controls and the reduction rate is different according to the operation conditions and control methods. At the Stoichiometric and/or low speed and low load the throttling method is more advantageous; however vice versa at lean and high load condition. Finally, the throttling is more efficient for HC reduction than masking, on the other side the NOx emissions increase under the masking and decrease under the port throttling compared with conventional port scheme.

The development of High efficiency fuel processor for technical independence 5kW class fuel cell system (기술자립형 5kW 연료전지 시스템 구축을 위한 고효율 연료변환기 개발)

  • Lee, Soojae;Choi, Daehyun;Jun, Heekwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.123.2-123.2
    • /
    • 2010
  • Fuel Cell cogeneration system is a promising technology for generating electricity and heat with high efficiency of low pollutant emission. We have been developed 5kW class fuel cell cogeneration system for commercial and residential application. The fuel processor is a crucial part of producing hydrogen from the fossil fuels such as LNG and LPG. The 5kW class high efficiency fuel processor consists of steam reformer, CO shift converter, CO preferential oxidation(PrOx) reactor, burner and heat exchanger. The one-stage CO shift converter process using a metal oxide catalyst was adopted. The efficiency of 5 kW class fuel processor shows 75% based on LHV. In addition, for the purpose of continuous operation with load fluctuations in the commercial system for residential use, load change of fuel processor was tested. Efficiency of 30%, 50%, 70% and 100% load shows 75%, 75%, 73% and 72%(LHV), respectively. Also, during the load change conditions, the product gas composition was stable and the outlet CO concentration was below 5 ppm. The Fuel processor operation was carried out in residential fuel cell cogeneration system with fuel cell stack under dynamic conditions. The 5kW class fuel processor have been evaluated for long-term durability and reliability test including with improvement in optimal operation logic.

  • PDF