• Title/Summary/Keyword: Part load factor

Search Result 167, Processing Time 0.023 seconds

A Comparative Study on the Legal System of Building a Rooftop Gardening between Korea and China (한국과 중국의 옥상녹화 제도 비교연구)

  • Zhao, Hong-Xia;Kang, Tai-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.11-17
    • /
    • 2011
  • This study focused on the regulations and support system of green rooftop landscaping between Korea and China. Our research found out regulations and support system to review the supplement point to understand the present state of green rooftop landscaping in the two countries. We aimed to provide basic legal information for the development of green rooftop landscaping regulations. Also, a management plan guide and after-evaluation guide were suggested. First, roof load safety is the foremost factor for the structure of green rooftop landscaping. It includes not only considering the weight of construction materials, but also accurately calculating weight of rain, snow and the rooftop's capacity for people when the rooftop is designed. Second, the appropriate waterproof and root material should be selected basing on climatic conditions. Third, a maintenance and management plan needs to be established to regularly check the plant, facilities, soil and to maintain them. Fourth, the criteria of quality inspection are waterproof and root resistant material, and the growth and development of plants. Waterproof and root resistant materials are a very important part of rooftop greening, so they must be strictly inspected after construction. Fifth, the support system of rooftop greening should be continuously improved. The choice of the object and the amount of support should be strictly stipulated so that the construction of rooftop is promoted when volunteers do rooftop greening.

LRFD Design and Reliability Level Estimation of a Steel Closed-Box Girder Bridge (폐단면 강박스거더교의 LRFD 설계와 신뢰성수준 평가)

  • Huh, Jung-Won;Yun, Dong-Geon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.217-225
    • /
    • 2010
  • Most of the steel bridges in Korea are being currently designed by the allowable stress design method that uses the conventional deterministic factors of safety. However the limit state design based on the concept of probability, statistics and reliability engineering is becoming very popular as a global standard deign method, leading the rational and economic bridge design. As part of the fundamental research to establish the load and resistance factor design(LRFD) of steel bridges considering domestic environmental conditions and regional characteristics, an experimental design is conducted by applying AASHTO-LRFD specification especially to a steel closed-box girder, which occupies relatively a large portion of steel bridges in Korea. Throughout the experimental design according to various sectional changes, some of the issues to be considered in the LRFD design of a composite steel closed-box girder bridge are examined. In this process, an Excel-based design verification program is developed for easy computation and prevention of errors. Quantitative reliability levels of the bridge sections designed by LRFD are also estimated using a reliability analysis method, and compared with the target reliability indexes applied in the LRFD design to verify the validity of the procedure and methodology used in this study.

An Analytical Study on Crack Behavior Inside Standard Compact Tension Specimen with Holes (구멍들을 가진 표준 CT 시험편 내에서의 크랙 거동에 대한 해석적 연구)

  • Lee, Jung Ho;Cho, Jae Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.531-537
    • /
    • 2016
  • The damage and fracture of machine or structure are caused by the crack happened from the defect existed at the inside of material. The properties of crack propagation and growth characteristic must be considered because there are many cases at which these cracks are densely existed. Therefore, this study investigates the fracture property due to the position of crack and hole inside the standard compact tension (C. T.) specimen. When the concentrated load is applied eccentrically at the standard C. T. specimen, the fracture mechanical behavior due to the existence or non-existence and the position of hole near crack is investigated. As the result of analysis study, model 3 (in case of the distance of 2mm on the horizontal direction between the end part and hole as the specimen model existed with one hole near the crack) has the maximum deformation, stress and deformation energy of the most values among three models. As the distance between the crack and hole inside the specimen becomes nearer, the maximum stress becomes higher in cases of three models. Apart from the number of holes, it is seen that the maximum stress becomes higher near the crack when the hole exists near the crack inside the specimen. If the hole inside the machine or the mechanical structure is punctured by using the result of this study, it is thought that the occurred breakage or breakdown can be prevented by reducing the fracture stress happened at the specimen.

Evaluation of the Degradation Trend of the Polyurethane Resilient Pad in the Rail Fastening System by Multi-stress Accelerated Degradation Test (복합가속열화시험을 통한 레일체결장치 폴리우레탄 탄성패드의 열화 경향 분석)

  • Sung, Deok-Yong;Park, Kwang-Hwa
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.466-472
    • /
    • 2013
  • The use of a concrete track is gradually growing in urban and high-speed railways in many part of the world. The resilient pad, which is essentially when concrete tracks are used, plays the important role of relieving the impact caused by train loads. The simple fatigue test[1] to estimate the variable stiffness of resilient pads is usually performed, but it differs depending on the practical conditions of different railways. In this study, the static stiffness levels of used resilient pads according to passing tonnages levels were measured in laboratory tests. Also, the simple fatigue test and the multi-stress accelerated degradation test for new resilient pads were performed in a laboratory. The static stiffness of the used pad was compared with the results of tests of usage times and cycles. The results of the comparison showed that the variable static stiffness levels of the used pad were similar to results of the multi-stress accelerated degradation test considering the fatigue and heat load. With a T-NT equation related to the degree of the multi-stress accelerated degradation, a model of multi-stress accelerated degradation for a resilient pad was devised. It was found through this effort that the total acceleration factor was approximately 2.62. Finally, this study proposes an equation for a multi-stress accelerated degradation model for polyurethane resilient pads.

A study on the effect of tunnelling to adjacent single piles and pile groups considering the transverse distance of pile tips from the tunnel (말뚝의 횡방향 이격거리를 고려한 터널굴착이 인접 단독말뚝 및 군말뚝에 미치는 영향에 대한 연구)

  • Jeon, Young-Jin;Kim, Sung-Hee;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.637-652
    • /
    • 2015
  • In the present work, a number of three-dimensional (3D) parametric numerical analyses have been carried out to study the influence of tunnelling on the behaviour of adjacent piles considering the transverse distance of the pile tip from the tunnel. Single piles and $5{\times}5$ piles inside a group with a spacing of 2.5d were considered, where d is the pile diameter. In the numerical modelling, several key issues, such as the tunnelling-induced pile settlements, the interface shear stresses, the relative shear displacements, the axial pile forces, the apparent factors of safety and zone of influence have been rigorously analysed. It has been found that when the piles are inside the influence zone, the pile head settlements are increased up to about 111% compared to those computed from the Greenfield condition. Larger pile settlements and smaller axial pile forces are induced on the piles inside the pile groups than those computed from the single piles since the piles responded as a block with the surrounding ground. Also tensile pile forces are induced associated with the upward resisting skin friction at the upper part of pile and the downward acting skin friction at the lower part of pile. On the contrary, when the piles were outside the influence zone, tunnelling-induced compressive pile forces developed. Based on computed load and displacement relation of the pile, the apparent factor of safety of the piles was reduced up to about 45%. Therefore the serviceability of the piles may be substantially reduced. The pile behaviour, when considering the single piles and the pile groups with regards to the influence zone, has been analysed by considering the key features in great details.

Anaerobic Organic Wastewater Treatment and Energy Regeneration by Utilizing E-PFR System (E-PER 반응기를 이용한 유기성 폐기물의 혐기성 처리와 재생에너지 생산에 관한 연구)

  • Kim, Burmshik;Choi, Hong-Bok;Lee, Jae-Ki;Park, Joo Hyung;Ji, Duk Gi;Choi, Eun-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wastewater containing strong organic matter is very difficult to treat by utilizing general sewage treatment plant. but the wastewater is adequate to generate biomass energy (bio-gas; methane gas) by utilizing anaerobic digestion. EcoDays Plug Flow Reactor (E-PFR), which was already proved as an excellent aerobic wastewater treatment reactor, was adapted for anaerobic food wastewater digestion. This research was performed to improve the efficiency of bio-gas production and to optimize anaerobic wastewater treatment system. Food wastewater from N food waste treatment plant was applied for the pilot scale experiments. The results indicated that the efficiency of anaerobic wastewater treatment and the volume of bio-gas were increased by applying E-PFR to anaerobic digestion. The structural characteristics of E-PFR can cause the high efficiency of anaerobic treatment processes. The unique structure of E-PFR is a diaphragm dividing vertical hydraulic multi-stages and the inversely protruded fluid transfer tubes on each diaphragm. The unique structure of E-PFR can make gas hold-up space at the top part of each stage in the reactor. Also, E-PFR can contain relatively high MLSS concentration in lower stage by vertical up-flow of wastewater. This hydraulic flow can cause high buffering capacity against shock load from the wastewater in the reactor, resulting in stable pH (7.0~8.0), relatively higher wastewater treatment efficiency, and larger volume of bio-gas generation. In addition, relatively longer solid retention time (SRT) in the reactor can increase organic matter degradation and bio-gas production efficiency. These characteristics in the reactor can be regarded as "ideal" anaerobic wastewater treatment conditions. Anaerobic wastewater treatment plant design factor can be assessed for having 70 % of methane gas content, and better bio-gas yielding and stable treatment efficiency based on the results of this research. For example, inner circulation with generated bio-gas in the reactor and better mixing conditions by improving fluid transfer tube structure can be used for achieving better bio-gas yielding efficiency. This research results can be used for acquiring better improved regenerated energy system.

  • PDF

Current Status of Ship Emissions and Reduction of Emissions According to RSZ in the Busan North Port (부산 북항에서의 선박 배출물질 현황과 선속제한에 의한 배출량 감소 연구)

  • Lee, Bo-Kyeong;Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.572-580
    • /
    • 2019
  • In view of the numerous discussions on global environmental issues, policies have been implemented to limit emissions in the field of marine transport, which accounts for a major part of international trade. In this study, a ship's emissions were calculated by applying the engine load factor to determine the total quantity of emissions based on the ship's speed reduction. For ships entering and leaving the Busan North Port from 1 January to 31 December 2017, emissions were calculated and analyzed based on the ship's type and its speed in the reduced speed zone (RSZ), which was set to 20 nautical miles. The comparison of the total amount of emissions under all situations, such as cruising, maneuvering, and hotelling modes revealed that the vessels that generated the most emissions were container ships at 76.1 %, general cargo ships at 7.2 %, and passenger ships at 6.8 %. In the cruising and maneuvering modes, general cargo ships discharged a lesser amount of emission in comparison with passenger ships; however, in the hotelling mode, the general cargo ships discharged a larger amount of emission than passenger ships. The total emissions of nitrogen oxides (NOx), sulphur oxides (SOx), particulate matter (PM), and volatile organic compounds (VOC), were 49.4 %, 45 %, 4 %, and 1.6 %, respectively. Furthermore, the amounts of emission were compared when ships navigated at their average service speed, 12, 10, and 8 knots in the RSZ, respectively. At 12 knots, the reduction in emissions was more than that of the ships navigating at their average service speed by 39 % in NOx, 40 % in VOC, 42 % in PM, and 38 % in Sox. At 10 knots, the emission reductions were 52 %, 54 %, 56 %, and 50 % in NOx, VOC, PM, and Sox, respectively. At 8 knots, the emission reductions were 62 %, 64 %, 67 %, and 59 % in NOx, VOC, PM, and Sox, respectively. As a result, the emissions were ef ectively reduced when there was a reduction in the ship's speed. Therefore, it is necessary to consider limiting the speed of ships entering and leaving the port to decrease the total quantity of emissions.