• Title/Summary/Keyword: Part Shrinkage

Search Result 200, Processing Time 0.019 seconds

A Study on Volumetric Shrinkage of Injection Molded Part by Neural Network (신경회로망을 이용한 사출성형품의 체적수축률에 관한 연구)

  • Min, Byeong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.224-233
    • /
    • 1999
  • The quality of injection molded parts is affected by the variables such as materials, design variables of part and mold, molding machine, and processing conditions. It is difficult to consider all the variables at the same time to predict the quality. In this paper neural network was applied to analyze the relationship between processing conditions and volumetric shrinkage of part. Engineering plastic gear was used for the study, and the learning data was extracted by the simulation software like Moldflow. Results of neural network was good agreement with simulation results. Nonlinear regression model was formulated using the test data of 3,125 obtained from neural network, Optimal processing conditions were calculated to minimize the volumetric shrinkage of molded part by the application of RQP(Recursive Quadratic Programming) algorithm.

  • PDF

Forming Error and Compensation in RP Using SLA (SLA를 이용한 쾌속조형시 성형오차와 보정)

  • Park, Sang-Ryang;Park, Dong-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.152-159
    • /
    • 2002
  • SLA (Stereolithography Apparatus) it a process used to rapidly produce polymer components directly from a computer representation of the part. Though SLA is being recognized as an innovative technology, it still cannot be used to fully practical application since it lacks of dimensional accuracy compared to conventional process. If the shrinkage were perfectly uniform and no distortion took place, excellent part accuracy could still be achieved through and appropriate scaling factor when generating the build file. However, in certain geometries involving intersecting thick and thin sections, nonuniform retrain shrinkage becomes the engine of part distortion. In order to improve the part accuracy of SLA, this paper evaluates how largely each parameter of SLA contributes to the part accuracy and estimates the optimal set of parameter which minimizes the dimension error of the test part, "Slab (100mm$\times$100mm$\times$2mm)"and "scale bar"part. Three control parameters such as critical exposure, generation depth and fill cure depth are used.

Application of shrinkage prediction models to restraint crack formation in unbonded post-tensioned slabs

  • Gabriela R. Martínez Lara;Myoungsu Shin;Yong-Hoon Byun;Goangseup Zi;Thomas H.-K. Kang
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.349-359
    • /
    • 2024
  • This study aims to investigate the effect of restraint configuration on crack formation due to shrinkage-and-creep-induced volumetric change in unbonded post-tensioned slabs. The first part of this study focuses on the comparison of existing shrinkage and creep calculation models that are used to predict the volume-changing behavior of concrete. The second part of this study presents the finite element analysis of a series of architectural configuration prototypes subjected to shrinkage and creep, which comprise unbonded post-tensioned slabs with various restraint configurations. The shrinkage and creep effects were simulated in the analysis by imposing strains obtained from one selected calculation model. The results suggest that a slab up to 300 ft. (90 m) in length does not require a closure strip if it is unrestrained by perimeter walls, and that the most effective restraint crack mitigation strategy for a slab restrained by perimeter walls is a partial wall release.

A Study on Injection Molding process for Manufacturing about Blower-fan (블로우팬의 사출성형공정에 관한 연구)

  • 김병곤;민병현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.316-319
    • /
    • 2002
  • Injection mold is a manufacturing process used to produce parts of complicated shape at a low cost. Many factors affect the quality of injection molded part during injection molding process. A study on the optimization of injection mold is progressed by using a simulation software like Moldflow. Filling, packing and cooling phases of injection molding processes are analyzed according to the mold design considering the shrinkage of molded part, the degree of filling rate and the wearing of a mold. Taguchi method is applied to analyze the significance of processing parameters and the dynamic characteristics according to the variation of processing parameters. From the results, the mold temperature and packing pressure influenced strongly the shrinkage of injection molded part.

  • PDF

The coupling effect of drying shrinkage and moisture diffusion in concrete

  • Suwito, A.;Ababneh, Ayman;Xi, Yunping;Willam, Kaspar
    • Computers and Concrete
    • /
    • v.3 no.2_3
    • /
    • pp.103-122
    • /
    • 2006
  • Drying shrinkage of concrete occurs due to the loss of moisture and thus, it is controlled by moisture diffusion process. On the other hand, the shrinkage causes cracking of concrete and affects its moisture diffusion properties. Therefore, moisture diffusion and drying shrinkage are two coupled processes and their interactive effect is important for the durability of concrete structures. In this paper, the two material parameters in the moisture diffusion equation, i.e., the moisture capacity and humidity diffusivity, are modified by two different methods to include the effect of drying shrinkage on the moisture diffusion. The effect of drying shrinkage on the humidity diffusivity is introduced by the scalar damage parameter. The effect of drying shrinkage on the moisture capacity is evaluated by an analytical model based on non-equilibrium thermodynamics and minimum potential energy principle for a two-phase composite. The mechanical part of drying shrinkage is modeled as an elastoplastic damage problem. The coupled problem of moisture diffusion and drying shrinkage is solved using a finite element method. The present model can predict that the drying shrinkage accelerates the moisture diffusion in concrete, and in turn, the accelerated drying process increases the shrinkage strain. The coupling effects are demonstrated by a numerical example.

Injection Molding Analysis of the Tub-drum for Drum Type Washer Using CAE (CAE를 이용한 드럼 세탁기용 Tub-drum의 사출 성형 해석)

  • Ye, Sang-Don;Min, Byeong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.2
    • /
    • pp.60-65
    • /
    • 2010
  • Injection molding process is one of the popular manufacturing methods to produce plastic parts with high efficiency and low cost. The tub-drum for drum type washer is made by an insert injection molding process with aluminum alloy insert of windmill type and has a big and complex structure consisted of many ribs to sustain the strength. In this paper, the volumetric shrinkages of rib part and bottom part surrounded by a windmill type insert are analyzed according to the vertical and circumferential direction of tub-drum. Volumetric shrinkage and its difference according to the height or radius of tub drum inform the designer to reduce the warpage of tub drum, and the optimal design of tub drum can be done from the those results. The change of volumetric shrinkage according to packing pressure is also analyzed. It is very important to analyze the volumetric shrinkage of tub drum because it generates the wearing phenomena at the rotating part connected to an aluminum alloy insert due to the warpage of tub drum.

The effect of the injection molding conditions on the shrinkage of HIPS (사출성형조건이 HIPS 수축율에 미치는 영향)

  • Cha B. S.;Rhee B. O.;Choi K. I.;Koo B. H.;Park H. P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.259-264
    • /
    • 2005
  • The shrinkage of the product in injection molded part occurs due to the volume change with variation of temperature and pressure and is influenced by the processing conditions of injection molding. Mold designers greatly concerns the shrinkage of parts for a high dimensional accuracy. In this study, bar type HIPS specimen with 15x19 grid on the surface was tested. The amount of shrinkage of flow and transverse directions was examined with respect to the injection molding conditions such as melt temperature, injection speed, holding pressure, mold temperature and cooling time. As the packing pressure increased, the difference of shrinkage of both directions is decreased and the absolute shrinkage value also decreased.

  • PDF

A study on shrinkage deformation according to injection molding conditions of pipe (annular) shaped products (파이프(Annular) 형상 제품의 사출성형 조건에 따른 수축 변형에 관한 연구)

  • Jeon, Dae-Seon
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.36-41
    • /
    • 2021
  • The 3 dimensional Pipe (Annular) Shaped Products was selected as a test sample, then a attribute of a molding shrinkage according to the parameters of a injection process was examined with PC, which is the typical engineering plastic. Both the inside and the outside diameter of the Pipe (Annular) sample were shrank into the inner direction of the part. And then the comparative analysis of the samples proved that a increasing thickness led a bigger shrinkage rate in the equal outside diametric samples, and a decreasing outside diameter caused a bigger shrinkage rate in the same thickness samples. The comparative study of the cushion volume of a injection machine showed that the molding shrinkage was most affected by the pressure strength among the resin temperature, the maintenance pressure strength and the maintenance pressure duration time. Each of the shrinkage rates according to the measuring direction and the gate position was different. As a result, the injection molded sample had not a typical circular shape.

Effects of Dimension of Part and Structure of Supports on the Shape Error in Stereolithography Process (SL 광조형 공정에서 제작물 치수와 지지대 구조가 형상오차에 미치는 영향)

  • Kim, Gi-Dae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.32-38
    • /
    • 2006
  • During stereolithography processes, the shape errors such as curl distortion and distortion of side face are generated due to the shrinkage of liquid resins. In this study, the effects of dimension of part and structure of supports on the shape error are examined. Cubic specimens which have different thicknesses are manufactured and their deformations are measured with CMM. Thicker part generates smaller curl distortion of top face and larger of bottom face. Also thicker part generates larger distortion of side face until part thickness increases to about 20mm. Larger stiffness of supports which is obtained by shorter spacing of the supports and line type contact instead of point type contact generates smaller shape error of the part.

A Study on the Design of Cooling Channels of Injection Mould to Manufacture a Flat Part with a Partly Thick Volume (부분적으로 후육부를 가지는 평판형 제품의 제작을 위한 사출성형 금형의 냉각채널 설계에 관한 연구)

  • Ahn, Dong-Gyu;Park, Min-Woo;Kim, Hyung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.824-833
    • /
    • 2012
  • The shrinkage and the warpage of the moulded part are influenced by the design of the product and injection mould. In a flat part with a partly thick volume, the warpage of the flat part is created from the difference of the shrinkage between thin and thick regions. The warpage of the flat part with a partly thick volume can be reduced by a proper design of the cooling system in the injection mould. The goal of this paper is to design properly cooling channels of injection mould to manufacture a flat part with a partly thick volume. The conformal cooling channel is adopted to improve cooling characteristics of a region with the thick volume. The linear cooling channels are assigned to the other region. The proper design of the conformal cooling channels is obtained from three-dimensional injection molding analysis for various design alternatives. The moulding characteristics of the designed mould with both conformal and linear cooling channels are compared to those of the mould with linear cooling channels from viewpoints of temperature, shrinkage and warpage of the moulded part using numerical analysis. Injection mould with both conformal and linear cooling channels for the flat part with a partially thick volume is fabricated. In addition, injection moulding experiments are performed using the fabricated mould. From the results of the injection moulding experiments, it has been shown that the designed mould can successfully fabricate the flat part with a partially thick volume.