• Title/Summary/Keyword: Part Shape Information Model

Search Result 87, Processing Time 0.031 seconds

Asymmetric Diffusion Model for Protein Spot Matching in 2-DE Image (2차원 전기영동 영상의 단백질 반점 정합을 위한 비대칭 확산 모형)

  • Choi, Kwan-Deok;Yoon, Young-Woo
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.561-574
    • /
    • 2008
  • The spot detection phase of the 2-DE image analysis program segments a gel image into spot regions by an image segmentation algorithm and fits the spot regions to a spot shape model and quantifies the spot informations for the next phases. Currently the watershed algorithm is generally used as the segmentation algorithm and there are the Gaussian model and the diffusion model for the shape model. The diffusion model is closer to real spot shapes than the Gaussian model however spots have very various shapes and especially an asymmetric formation in x-coordinate and y-coordinate. The reason for asymmetric formation of spots is known that a protein could not be diffused completely because the 2-DE could not be processed under the ideal environment usually. Accordingly we propose an asymmetric diffusion model in this paper. The asymmetric diffusion model assumes that a protein spot is diffused from a disc at initial time of diffusing process, but is diffused asymmetrically for x-axis and y-axis respectively as time goes on. In experiments we processed spot matching for 19 gel images by using three models respectively and evaluated averages of SNR for comparing three models. As averages of SNR we got 14.22dB for the Gaussian model, 20.72dB for the diffusion model and 22.85dB for the asymmetric diffusion model. By experimental results we could confirm the asymmetric diffusion model is more efficient and more adequate for spot matching than the Gaussian model and the diffusion model.

A Structural Approach to On-line Signature Verification (구조적 접근방식의 온라인 자동 서명 겁증 기법)

  • Kim, Seong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.385-396
    • /
    • 2005
  • In this paper, a new structural approach to on-line signature verification is presented. A primitive pattern is defined as a part segmented by a local minimal position of speed. And a structural description of signature is composed of subpatterns which are defined as such forms as rotation shape, cusp shape and bell shape, acquired by composition of the primitives regarding the directional changes. As the matching method to find identical parts between two signatures, a modified DP(dynamic programming) matching algorithm is presented. And also, variation and complexity of local parts are computed from the training samples, and reference model and decision boundary are derived from these. Error rate, execution time and memory usage are compared among the functional approach, the parametric approach and the proposed structural approach. It is found that the average error rate can be reduced from 14.2% to 4.05% when the local parts of a signature are weighted and the complexity is used as a factor of decision threshold. Though the error rate is similar to that of functional approaches. time consumption and memory usage of the proposed structural approach are shown to be very effective.

  • PDF

A Defocus Technique based Depth from Lens Translation using Sequential SVD Factorization

  • Kim, Jong-Il;Ahn, Hyun-Sik;Jeong, Gu-Min;Kim, Do-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.383-388
    • /
    • 2005
  • Depth recovery in robot vision is an essential problem to infer the three dimensional geometry of scenes from a sequence of the two dimensional images. In the past, many studies have been proposed for the depth estimation such as stereopsis, motion parallax and blurring phenomena. Among cues for depth estimation, depth from lens translation is based on shape from motion by using feature points. This approach is derived from the correspondence of feature points detected in images and performs the depth estimation that uses information on the motion of feature points. The approaches using motion vectors suffer from the occlusion or missing part problem, and the image blur is ignored in the feature point detection. This paper presents a novel approach to the defocus technique based depth from lens translation using sequential SVD factorization. Solving such the problems requires modeling of mutual relationship between the light and optics until reaching the image plane. For this mutuality, we first discuss the optical properties of a camera system, because the image blur varies according to camera parameter settings. The camera system accounts for the camera model integrating a thin lens based camera model to explain the light and optical properties and a perspective projection camera model to explain the depth from lens translation. Then, depth from lens translation is proposed to use the feature points detected in edges of the image blur. The feature points contain the depth information derived from an amount of blur of width. The shape and motion can be estimated from the motion of feature points. This method uses the sequential SVD factorization to represent the orthogonal matrices that are singular value decomposition. Some experiments have been performed with a sequence of real and synthetic images comparing the presented method with the depth from lens translation. Experimental results have demonstrated the validity and shown the applicability of the proposed method to the depth estimation.

  • PDF

3D Scanning Embedded System Design (3D 스캐닝 임베디드 시스템 설계)

  • Hong, Seonhack;Cho, Kyungsoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.49-56
    • /
    • 2017
  • It is the approach of embedded system design that finds 3D scanning technology to analyze a real object or environment to collect data on its shape and appearance. 3D laser scanning developed during the last half of 20th century in an attempt to accurately recreate the surfaces of various objects. 1960s, early scanners used lights, cameras, and projectors to carry out the scanning in the lacks of performance which encountered many difficulties with shiny, mirroring, or transparent objects. The 3D scanning technology has leveled-up with helpful of embedded software platform research and design. In this paper, First we designed the hardware of laser/camera setup and turntable moving part which is the base of object. Second, we introduced the process of scanning 3D data with software and analyzed the resulting scanned image on the web server. Last, we made the 3D scanning embedded device with 3D printing model and experimented the 3D scanning performance with Raspberry Pi.

Object Recognition Using Neuro-Fuzzy Inference System (뉴로-퍼지 추론 시스템을 이용한 물체인식)

  • 김형근;최갑석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.5
    • /
    • pp.482-494
    • /
    • 1992
  • In this paper, the neuro-fuzzy inferene system for the effective object recognition is studied. The proposed neuro-fuzzy inference system combines learning capability of neural network with inference process of fuzzy theory, and the system executes the fuzzy inference by neural network automatically. The proposed system consists of the antecedence neural network, the consequent neural network, and the fuzzy operational part, For dissolving the ambiguity of recognition due to input variance in the neuro-fuzzy inference system, the antecedence’s fuzzy proposition of the inference rules are automatically produced by error back propagation learining rule. Therefore, when the fuzzy inference is made, the shape of membership functions os adaptively modified according to the variation. The antecedence neural netwerk constructs a separated MNN(Model Classification Neural Network)and LNN(Line segment Classification Neural Networks)for dissolving the degradation of recognition rate. The antecedence neural network can overcome the limitation of boundary decisoion characteristics of nrural network due to the similarity of extracted features. The increased recognition rate is gained by the consequent neural network which is designed to learn inference rules for the effective system output.

  • PDF

Design of Fuzzy-Sliding Model Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyn
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 2001
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that he selected solution become the global optimal solution by optimizing the Akaikes information criterion expressing the quality of the inference rules. The trajectory tracking simulation and experiment of the polishing robot show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding mode controller provides reliable tracking performance during the polishing process.

  • PDF

Facial Features and Motion Recovery using multi-modal information and Paraperspective Camera Model (다양한 형식의 얼굴정보와 준원근 카메라 모델해석을 이용한 얼굴 특징점 및 움직임 복원)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.563-570
    • /
    • 2002
  • Robust extraction of 3D facial features and global motion information from 2D image sequence for the MPEG-4 SNHC face model encoding is described. The facial regions are detected from image sequence using multi-modal fusion technique that combines range, color and motion information. 23 facial features among the MPEG-4 FDP (Face Definition Parameters) are extracted automatically inside the facial region using color transform (GSCD, BWCD) and morphological processing. The extracted facial features are used to recover the 3D shape and global motion of the object using paraperspective camera model and SVD (Singular Value Decomposition) factorization method. A 3D synthetic object is designed and tested to show the performance of proposed algorithm. The recovered 3D motion information is transformed into global motion parameters of FAP (Face Animation Parameters) of the MPEG-4 to synchronize a generic face model with a real face.

3D Head Modeling using Depth Sensor

  • Song, Eungyeol;Choi, Jaesung;Jeon, Taejae;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.13-16
    • /
    • 2015
  • Purpose We conducted a study on the reconstruction of the head's shape in 3D using the ToF depth sensor. A time-of-flight camera (ToF camera) is a range imaging camera system that resolves distance based on the known speed of light, measuring the time-of-flight of a light signal between the camera and the subject for each point of the image. The above method is the safest way of measuring the head shape of plagiocephaly patients in 3D. The texture, appearance and size of the head were reconstructed from the measured data and we used the SDF method for a precise reconstruction. Materials and Methods To generate a precise model, mesh was generated by using Marching cube and SDF. Results The ground truth was determined by measuring 10 people of experiment participants for 3 times repetitively and the created 3D model of the same part from this experiment was measured as well. Measurement of actual head circumference and the reconstructed model were made according to the layer 3 standard and measurement errors were also calculated. As a result, we were able to gain exact results with an average error of 0.9 cm, standard deviation of 0.9, min: 0.2 and max: 1.4. Conclusion The suggested method was able to complete the 3D model by minimizing errors. This model is very effective in terms of quantitative and objective evaluation. However, measurement range somewhat lacks 3D information for the manufacture of protective helmets, as measurements were made according to the layer 3 standard. As a result, measurement range will need to be widened to facilitate production of more precise and perfectively protective helmets by conducting scans on all head circumferences in the future.

A Data Model for Past and Future Location Process of Moving Objects (이동 객체의 과거 및 미래 위치 연산을 위한 데이터 모델)

  • Jang, Seung-Youn;Ahn, Yoon-Ae;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.10D no.1
    • /
    • pp.45-56
    • /
    • 2003
  • In the wireless environment, according to the development of technology, which is able to obtain location information of spatiotemporal moving object, the various application systems are developed such as vehicle tracking system, forest fire management system and digital battle field system. These application systems need the data model, which is able to represent and process the continuous change of moving object. However, if moving objects are expressed by a relational model, there is a problem which is not able to store all location information that changed per every time. Also, existing data models of moving object have a week point, which constrain the query time to the time that is managed in the database such as past or current and near future. Therefore, in this paper, we propose a data model, which is able to not only express the continuous movement of moving point and moving region but also process the operation at all query time by using shape-change process and location determination functions for past and future. In addition, we apply the proposed model to forest fire management system and evaluate the validity through the implementation result.

Non-destructive testing of historical masonry using radar tomography (레이더 토모그래피에 의한 석조문화재 비파괴 검사)

  • Cha, Young-Ho;Kang, Jong-Suk;Choi, Yun-Gyeong;Suh, Jung-Hee;Bae, Byeong-Seon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.138-156
    • /
    • 2004
  • GPR(Ground Penetrating Radar) was used for imaging the interior of the historical masonry such as stone pagoda in order to provide the basic information of safely inspection. The scope of the imaging was restricted to the foundation part of stone pagoda that transferred the load of the pagoda to the ground. Kirchhoff migration and traveltime tomography was used for imaging the outer stone and the inside of stone pagoda, respectively. From the migrated images, we could measure the thickness and the shape of the boundaries of the outer stone in the foundation part. From the reconstructed tomograms for the physical model, we could get the GPR propagation velocity distribution and exactly find the position of the air in the model and calculate the average velocity with respect to the different filling materials. The properties and the shape of the interior materials of stone pagoda can be basic informations for the safety inspection.

  • PDF