• Title/Summary/Keyword: Parotec system

Search Result 8, Processing Time 0.026 seconds

Reliability of Plantar Pressure Measures Using the Parotec System (Parotec System을 이용한 족저압 측정의 신뢰도)

  • Roh, Jung-Suk;Kim, Tack-Hoon
    • Physical Therapy Korea
    • /
    • v.8 no.3
    • /
    • pp.35-41
    • /
    • 2001
  • In-shoe measurement systems allow the clinician and researcher to examine the pressure parameters within the shoe. The purpose of this study was to investigate the test-retest reliability of plantar pressures using the Parotec system over speeds and plantar regions. Seventeen healthy subjects were recruited for the study. Sampling rate was 100 Hz, and data of six variables (pressure on medial heel, lateral heel, 1st metatarsal head, 5th metatarsal head, and great toe and total impulse) were collected in four different gait speed (1.0 m/sec, 1.5 m/sec, 2.0 m/sec, and comfortable walking speed) in each day. The result indicates fair to excellent reliability between the two day test. Intraclass correlation coefficients (ICCs) ranged from .693 to .979, and range of reliability was similar depending on the speed and plantar region. In most cases, data recorded by the Parotec systems provide good evidence for the reliability.

  • PDF

Analysis of Impulse under Foot in Various Shoes (신발 종류에 따른 족저 임펄스의 분석)

  • 안은수;엄광문;이순혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1228-1231
    • /
    • 2004
  • We analyzed the impulse on 24 sensors location under the foot using the Parotec system for the investigation of the relationship between the shoe type and the foot pathologies. Total 7 kinds of shoes, i.e. sport shoe, high heel shoes (5cm heel, 8cm heel, 13cm heel), platform shoe, inline skate, and heelys were evaluated for 20 normal subjects. Compared with the impulse distribution of the sport shoe, greater impulses were shown at the 1$^{st}$ phalange and the 1$^{st}$ metatarsal-phalangeal head in high-heel shoes, lateral tarsal bone and medial metatarsal bone in platform shoe, medial tarsal bone in inline-skate, and medial tarsal bone and 1st phalange in heelys shoe. The result of this study is expected to provide useful information about the relationship between the shoe type and the foot pathologies.ies.

  • PDF

Characteristics of Knee Joint Flexion Angle and Foot Pressure according Slope Climbing (경사로 오르기 동안 슬관절 굴곡각도와 족저압의 특성 비교)

  • Oh, Tae-Young;Song, Hyeon-Ju;Lee, Seul-Gi;Jung, Ye-Ji;Lim, Jong-Su
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.268-276
    • /
    • 2010
  • This study was to investigate the knee joint flexion angle and the foot pressure during climbing with different slope. The 24 healthy subjects were participated. And foot pressure was investigated using Parotec system. The knee joint flexion angle were filmed to using a video camera on each slope($0^{\circ},\;3^{\circ},\;6{\circ},\;9^{\circ}$). And knee joint angle was investigated by Dartfish. The data were analyzed ANOVAs. In conclusion, there was significantly different that knee joint flexion angle related on each slope angle. In foot pressure, there was significantly different in lateral heel area(1 cell), medial midfoot area(9 cell), medial forefoot area(15, 16 cell) of left foot, and in lateral heel area(3 cell) of right foot. There was significantly different of foot pressure in lateral and medial heel when knee joint flexion angle is between $10^{\circ}$ and $20^{\circ}$. There was change of gait cycle according to walking slop angle increasing, and the initial contact phase was shorter, the foot pressure in lateral heel was lower.

A Study of Characteristics of Foot Pressure Distribution in Trans-tibial Amputee Subjects (하퇴 의지 사용자의 족저압 분포 특성에 관한 연구)

  • Kim, Jang-Hwan;Cynn, Heon-Seock
    • Physical Therapy Korea
    • /
    • v.8 no.3
    • /
    • pp.1-10
    • /
    • 2001
  • The purpose of this study was to compare the static pressure, dynamic pressure, dynamic pressure-time integral, relative impulse, and contact time between the sound lower limb and amputated lower limb in trans-tibial amputee subjects using Parotec system. Seventeen trans-tibial amputee subjects wearing endoskeletal trans-tibial prosthesis voluntarily participated in this study. The results were as follows: 1) In static standing condition, there were significantly higher static pressure in sound lower limb insole sensor of 10, 14, 15, 18, 19, 23, and 24 and in amputated lower limb insole sensor of 9, 12, and 16 (p<.05). 2) In dynamic gait condition, there were significantly higher dynamic pressure in sound lower limb insole sensor of 2, 18, 22, 23, and 24 and in amputated lower limb insole sensor of 5, 9, 10, 11, 12, 14, 15, and 16 (p<.05). 3) In dynamic gait condition, there were significantly higher pressure-time integral in sound lower limb insole sensor of 2, 4, 18, 19, 20, 21, 23, and 24 and in amputated lower limb insole sensor of 5, 11, 12, and 15 (p<.05). 4) In dynamic gait condition, there were significantly higher relative impulse in sound lower limb insole sensor of 18, 19, 20, 22, 23, and 24 and in amputated lower limb insole sensor of 5, 9, 10, 11, 12, and 15 (p<.05). 5) In dynamic gait condition, there was significantly higher percentage of contact time in push off phase of sound lower limb and in support phase of amputated lower limb (p<.05). These results suggest that trans-tibial amputee subjects had characteristics of shortened push off phase due to unutilized forefoot and of lengthened support phase with higher pressure in the midfoot.

  • PDF

The Comparison of Characteristics of Foot pressure between Treadmill and Ground walking in Normal person (정상인의 평지보행과 트레드밀 보행 시 족저압의 특성 비교)

  • Kim, Ji-Hye;Oh, Tae-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.1
    • /
    • pp.53-61
    • /
    • 2010
  • Purpose : The purpose of this study is to compare the distribution of foot pressure, knee and ankle joint angle between treadmill walking and ground walking in normal person. Methods : 18 Person of subject has participated this study, let subject to walk in ground and treadmill in order to gain data of foot distribution and knee, ankle joint angle using by parotec system. and Dartfish system. Walking velocity was constrained by 2Km/h and more 10sec. Date analysis was used by paired-t test using SPSS/PC statistical programs for window. Results : Result show that total contact times has shown symmetry between both legs, and more increase of left foot pressure in treadmill walking. Foot pressure of treadmill walking was significantly decreased in right hind foot and fore foot and hallux area. The ankle joint angle of treadmill walking was significantly decreased in initial contact phase. Conclusion : Results of this study show that foot pressure of treadmill walking was more decreased than ground walking in right hind foot and fore foot, hallux area. And the ankle joint angle of treadmill walking was significantly decreased in initial contact phase.

Influence of Trunk Control Using Pelvic Movements upon the Foot Pressure in Patients with Hemiplegia (골반동작을 이용한 체간조절이 편마비 환자의 족저압에 미치는 영향)

  • Kim, Ji-Hye;Hwang, Byong-Yong;Oh, Tae-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.5
    • /
    • pp.11-19
    • /
    • 2007
  • Purpose: The purpose of this study was to examine effect of trunk control using pelvic movements upon the foot pressure in patients with hemiplegia. Methods: Twelve males with hemiplegia were the procedure executed turnk control using pelvic movements. The foot pressure were measured using Parotec-system. Results: The data were analysed with paired t-test. First, there was a significant increase in external and internal sensors of dynamic foot pressure change of the hindfoot before and after therapy. Also there was significant increase in hallux (p<0.05). Second, there was a significant increase of affected side in support phase(p<0.05) and decreased of affected side in overlapping phase(p<0.05). Third, there was a significant increase in foot floor contact time and impulse pressure rate between affected and non affected side(p<0.05). Conclusion: The trunk control with pelvic movement had an significant effect on the legs by increase activities of hip flexors and abductors. Also had an effect on ankle dorsiflexion and plantar flexor by biomechanical movement.

  • PDF

The Characteristics of Foot Pressure Distribution According to Walking Speeds of Normal Gait and Ground Inclinations (정상 보행의 속도와 경사에 따른 족저압 분포의 특성)

  • Hong, Wan-Sung;Kim, Gi-Won
    • Journal of Korean Physical Therapy Science
    • /
    • v.11 no.4
    • /
    • pp.29-37
    • /
    • 2004
  • Measurements of plantar pressure provide an indication of foot and ankle function during gait and other functional activities because the foot and ankle provide necessary support and flexibility for weight bearing and weight shifting while people are performing these activities. Plantar pressure is being increasingly used in both research and clinical practice to measure the effects of various footwear and physical therapy intervention. The influence of walking speed and ground inclination on plantar pressure parameters However has not been evaluated in detail. So, in this study to determine the effect of changes in walking speed and ground inclination on plantar pressure treadmills with different walking speeds and inclination were used. Plantar pressure parameters were measured with the Parotec system using the walking and running in 20 healthy participants(10 male, 10 female) aged $20{\sim}28$(mean 22.22, S.D.2.26 years) when slow walking and running. The result of this study with increased die walking speed, the peak pressure of 1st, 5th metatarsal head and total contact time and impulse total at the forefoot was affected by walking speed; however, die peak pressure, contact time and impulse total at the forefoot was not affected by ground inclination.

  • PDF

Effect of Shoe Size on Foot Pressure, Ground Reaction Force, and Fatigue During Walking and Running (보행과 달리기 시 신발의 크기가 족저압과 지면반발력, 하지의 근피로에 미치는 영향)

  • Kim, Tack-Hoon
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • The purpose of this study was to assess the influence of two shoe size conditions on foot pressure, ground reaction force (GRF), and lower extremity muscle fatigue. Seven healthy men participated. They randomly performed walking and running in two different conditions: proper shoe size and 10 mm greater than proper shoe size. Peak foot pressure, and vertical, anterior and mediolateral force components were recorded with the Parotec system and Kisler force platform. To assess fatigue, the participants performed treadmill running for twenty-five minutes twice, each time wearing a different shoe size. Surface electromyography was used to confirm localized muscle fatigue using power spectral analysis of four muscles (tibialis anterior, gastrocnemius medialis, rectus femoris, and biceps femoris). The results were as follows: 1) In walking conditions, there was a significantly higher peak pressure in the 10 mm greater than proper shoe size insole sensor 1, 2, 14, and 18 (p<.05). 2) In running conditions, there was a significantly higher peak pressure in the 10 mm greater than proper shoe size insole sensor 5, 14, and 15 (p<.05). 3) In walking conditions, there was a significantly higher first maximal vertical GRF in the 10 mm greater than proper shoe size (p<.05). 4) In running conditions, no GRF components were significantly different between each shoe size condition (p>.05). 5) Muscle fatigue indexes of the tibialis anterior and rectus femoris were significantly increased in the 10 mm greater than proper shoe size condition. These results indicate that wearing shoes that are too large could further exacerbate the problems of increased foot pressure, vertical GRF, and muscle fatigue.

  • PDF