• Title/Summary/Keyword: Parkinson/s

Search Result 790, Processing Time 0.04 seconds

A Systematic Review on Drug Safety for Molsidomine, Nicorandil and Trimetazidine (Molsidomine, Nicorandil, Trimetazidine의 안전성 관련 체계적 고찰)

  • Jeong, Kyeong Hye;Lee, Euni
    • Korean Journal of Clinical Pharmacy
    • /
    • v.26 no.2
    • /
    • pp.172-180
    • /
    • 2016
  • Background: Ischemic heart disease is the most common type of heart disease and an important cause of death in Korea. Among marketed anti-anginal medications, molsidomine, nicorandil, and trimetazidine are approved in Korea with unique mechanism of actions. As these drugs are not approved by the US Food and Drug Administration, the access to the up-to-dated and comprehensive safety-related information has been less than optimal from drug information resources used by Korean pharmacists. Methods: A systematic review was conducted using Embase and Korean manuscripts to compile safety updates for these medications. Out of 418 articles from keyword searches, 52 studies were reviewed in full to compare adverse effects (AEs) with the approved package inserts (PI). Results: Molsidomine related adverse effects were mostly mild or moderate, but anxiety, palpitation, epigastric pain, and sexual potency reduction were additional AEs found from the review not listed in PI. Although PI has included ulceration in oral cavity and gastrointestinal tracts including anus by nicorandil, the Korea FDA recently recommended adding corneal, genital, and skin ulcers to the approved PI. Trimetazidine induced Parkinsonism, worsening of the symptoms for patients diagnosed with Parkinson's disease, gastrointestinal burning, and muscle cramps were additionally identified AEs not listed in PI for trimetazidine. Conclusion: Continuous evaluations of the safety profile of these agents are needed to balance the risks and benefits to provide evidence-based safety counseling to the patients. In addition, more focused efforts on spontaneous reporting are warranted by healthcare professionals to safeguard patients against AEs.

Loss of Hfe Function Reverses Impaired Recognition Memory Caused by Olfactory Manganese Exposure in Mice

  • Ye, Qi;Kim, Jonghan
    • Toxicological Research
    • /
    • v.31 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • Excessive manganese (Mn) in the brain promotes a variety of abnormal behaviors, including memory deficits, decreased motor skills and psychotic behavior resembling Parkinson's disease. Hereditary hemochromatosis (HH) is a prevalent genetic iron overload disorder worldwide. Dysfunction in HFE gene is the major cause of HH. Our previous study has demonstrated that olfactory Mn uptake is altered by HFE deficiency, suggesting that loss of HFE function could alter manganese-associated neurotoxicity. To test this hypothesis, Hfe-knockout ($Hfe^{-/-}$) and wild-type ($Hfe^{+/+}$) mice were intranasally-instilled with manganese chloride ($MnCl_2$ 5 mg/kg) or water daily for 3 weeks and examined for memory function. Olfactory Mn diminished both short-term recognition and spatial memory in $Hfe^{+/+}$ mice, as examined by novel object recognition task and Barnes maze test, respectively. Interestingly, $Hfe^{-/-}$ mice did not show impaired recognition memory caused by Mn exposure, suggesting a potential protective effect of Hfe deficiency against Mn-induced memory deficits. Since many of the neurotoxic effects of manganese are thought to result from increased oxidative stress, we quantified activities of anti-oxidant enzymes in the prefrontal cortex (PFC). Mn instillation decreased superoxide dismutase 1 (SOD1) activity in $Hfe^{+/+}$ mice, but not in $Hfe^{-/-}$ mice. In addition, Hfe deficiency up-regulated SOD1 and glutathione peroxidase activities. These results suggest a beneficial role of Hfe deficiency in attenuating Mn-induced oxidative stress in the PFC. Furthermore, Mn exposure reduced nicotinic acetylcholine receptor levels in the PFC, indicating that blunted acetylcholine signaling could contribute to impaired memory associated with intranasal manganese. Together, our model suggests that disrupted cholinergic system in the brain is involved in airborne Mn-induced memory deficits and loss of HFE function could in part prevent memory loss via a potential up-regulation of anti-oxidant enzymes in the PFC.

A Review of the motor learning stratige to improve handwriting function in Parkinson's disease (파킨슨병 환자의 Handwriting 기능 향상을 위한 운동학습 전략에 대한 문헌 고찰)

  • Yoo, Yeon-Hwan;Park, Jin-Hyuck;Lee, Joo-Hyun
    • Therapeutic Science for Rehabilitation
    • /
    • v.4 no.1
    • /
    • pp.29-38
    • /
    • 2015
  • Objective : The purpose of the study is to propose the treatment methods for problem of handwriting, micrographia in Parkinsons disease. Methods : For this purpose, foreign literatures on the subjects with Parkinsons disease was researched. Results : The results of this review is summarized as follows. The treatment methods for micrographia were applied to external cue and feedback among motor learning strategies in order to improve motor initiation. The external cues included visual, auditory, and verbal stimulations, and feedback strategy was visual stimulation. For writing with external cue or visual feedback, result in expanding the size of the letters in addition, writing task performance is maintained for a short period without those. Conclusion : Further studies are needed to examine the strategy maintained effect for long periods.

Synthetic 3',4'-Dihydroxyflavone Exerts Anti-Neuroinflammatory Effects in BV2 Microglia and a Mouse Model

  • Kim, Namkwon;Yoo, Hyung-Seok;Ju, Yeon-Joo;Oh, Myung Sook;Lee, Kyung-Tae;Inn, Kyung-Soo;Kim, Nam-Jung;Lee, Jong Kil
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.210-217
    • /
    • 2018
  • Neuroinflammation is an immune response within the central nervous system against various proinflammatory stimuli. Abnormal activation of this response contributes to neurodegenerative diseases such as Parkinson disease, Alzheimer's disease, and Huntington disease. Therefore, pharmacologic modulation of abnormal neuroinflammation is thought to be a promising approach to amelioration of neurodegenerative diseases. In this study, we evaluated the synthetic flavone derivative 3',4'-dihydroxyflavone, investigating its anti-neuroinflammatory activity in BV2 microglial cells and in a mouse model. In BV2 microglial cells, 3',4'-dihydroxyflavone successfully inhibited production of chemokines such as nitric oxide and prostaglandin $E_2$ and proinflammatory cytokines such as tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 in BV2 microglia. It also inhibited phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor $(NF)-{\kappa}B$ activation. This indicates that the anti-inflammatory activities of 3',4'-dihydroxyflavone might be related to suppression of the proinflammatory MAPK and $NF-{\kappa}B$ signaling pathways. Similar anti-neuroinflammatory activities of the compound were observed in the mouse model. These findings suggest that 3',4'-dihydroxyflavone is a potential drug candidate for the treatment of microglia-related neuroinflammatory diseases.

Carbon Monoxide Ameliorates 6-Hydroxydopamine-Induced Cell Death in C6 Glioma Cells

  • Moon, Hyewon;Jang, Jung-Hee;Jang, Tae Chang;Park, Gyu Hwan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.175-181
    • /
    • 2018
  • Carbon monoxide (CO) is well-known as toxic gas and intrinsic signaling molecule such as neurotransmitter and blood vessel relaxant. Recently, it has been reported that low concentration of CO exerts therapeutic actions under various pathological conditions including liver failure, heart failure, gastric cancer, and cardiac arrest. However, little has been known about the effect of CO in neurodegenerative diseases like Parkinson's disease (PD). To test whether CO could exert a beneficial action during oxidative cell death in PD, we examined the effects of CO on 6-hydroxydopamine (6-OHDA)-induced cell death in C6 glioma cells. Treatment of CO-releasing molecule-2 (CORM-2) significantly attenuated 6-OHDA-induced apoptotic cell death in a dose-dependent manner. CORM-2 treatment decreased Bax/Bcl2 ratio and caspase-3 activity, which had been increased by 6-OHDA. CORM-2 increased phosphorylation of NF-E2-related factor 2 (Nrf2) which is a transcription factor regulating antioxidant proteins. Subsequently, CORM-2 also increased the expression of heme oxygenase-1 and superoxide dismutases (CuZnSOD and MnSOD), which were antioxidant enzymes regulated by Nrf2. These results suggest that CO released by CORM-2 treatment may have protective effects against oxidative cell death in PD through the potentiation of cellular adaptive survival responses via activation of Nrf2 and upregulation of heme oxygenase-1, leading to increasing antioxidant defense capacity.

Regional Cerebral Perfusion in Progressive Supranuclear Palsy (진행성 핵상 마비에서의 국소 뇌혈류)

  • Lee, Won-Yong;Lee, Kyung-Han;Lee, Ki-Hyeong;Yoon, Byung-Woo;Lee, Myung-Chul;Lee, Sang-Bok;Jeon, Beom-S.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.1
    • /
    • pp.47-55
    • /
    • 1996
  • Progressive supranuclear palsy (PSP) is a parkinson-plus syndrome characterized clinically by supranuclear ephthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormality and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using $^{99m}Tc$-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p<0.05). There was no correlation between the severity of the motor abnormality and any of the regional cerebral perfusion indices (p>0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex.

  • PDF

Distribution and Ultrastructure of Dopaminergic Neurons in the Substantia Nigra of Mongolian Gerbil (Meriones unguiculates) (모래쥐 흑색질의 도파민성 신경세포의 분포와 미세구조)

  • Choi, Wol-Bong;Yoon, Sang-Seon;Ko, Byoung-Moon;Jo, Seung-Mook;Nam, Seong-Ahn;Choi, Chang-Do
    • Applied Microscopy
    • /
    • v.27 no.4
    • /
    • pp.461-472
    • /
    • 1997
  • The substantia nigra of the Mongolian gerbil was studies by tyrosine hydroxylase immunohistochemistry and immunoelectron microscopy with preembedding method. The purpose was to obtain information on the distribution and ultrastructure of the Tyrosine hydroxylase immunoreactive and dopaminergic neurons in the substantia nigra, in order to provide the necessary background for the gerbil. Large number of tyrosine hydroxylase immunoreactive neurons were located in the compact part of substantia nigra. Findings in the gerbil, compared to observations in the other species, included the presence of prominent bundles of tyrosine hydroxylase immunoreactive cytoplasmic processes passing in the dorsoventral direction from pars compacta into pars reticulata at middle and caudal levels of the substantia nigra, and the presence of a distinct tyrosine hydroxylase immunoreactive substantia nigra pars lateralis. Tyrosine hydroxylase immunoreactive neurons had well-developed cell organelles, especially rough endoplasmic reticulum, free ribosome and poly-ribosome, and showed the infoldings of the nuclear envelope. We anticipate that the present description of the cellular organization of the tyrosine hydroxylase immunoreactive dopaminergic area in the substantia nigra of gerbil will be useful for the animal experimental model of Parkinson's disease.

  • PDF

Protective Effect of Korean Red Ginseng against 6-Hydroxydopamine-induced Nitrosative Cell Death via Fortifying Cellular Defense System (6-Hydroxydopamine으로 유도된 질소적 세포 사멸에 대한 고려홍삼 추출물의 보호효과)

  • Lee, Chan;Jang, Jung-Hee;Park, Gyu Hwan
    • YAKHAK HOEJI
    • /
    • v.60 no.2
    • /
    • pp.92-99
    • /
    • 2016
  • Parkinson's disease (PD) is one of the representative neurodegenerative movement disorders with the selective loss of dopaminergic neurons in the substantia nigra. 6-Hydroxydopamine (6-OHDA) is widely used as an experimental model system to mimic PD and has been reported to cause neuronal cell death via oxidative and/or nitrosative stress. Therefore, daily intake of dietary or medicinal plants which fortifies cellular antioxidant capacity can exert neuroprotective effects in PD. In the present study, we have investigated the protective effect of Korean red ginseng (KRG) against 6-OHDA-induced nitrosative death in C6 glioma cells. Treatment of C6 cells with 6-OHDA decreased cell viability and increased expression of inducible nitric oxide synthase, production of nitric oxide as well as peroxynitrite, and formation of nitrotyrosine. 6-OHDA led to apoptotic cell death as determined by decreased Bcl-2/Bax, phosphorylation of JNK, activation of caspase-3, and cleavage of PARP. Conversely, pretreatment of C6 cells with KRG attenuated 6-ODHA-induced cytotoxicity, apoptosis, and nitrosative damages. To further elucidate the molecular mechanism of KRG protection against 6-OHDA-induced nitrosative cell death, we have focused on the cellular self-defense molecules against exogenous noxious stimuli. KRG treatment up-regulated heme oxygenase-1 (HO-1), a key antioxidant enzyme essential for cellular defense against oxidative and/or nitrosative stress via activation of Nrf2. Taken together, these findings suggest KRG may have preventive and/or therapeutic potentials for the management of PD.

Fucoidan attenuates 6-hydroxydopamine-induced neurotoxicity by exerting anti-oxidative and anti-apoptotic actions in SH-SY5Y cells

  • Kim, Myung-Hwan;Namgoong, Hoon;Jung, Bae-Dong;Kwon, Myung-Sang;Choi, Yeon-Shik;Shin, Taekyun;Kim, Hyoung-Chun;Wie, Myung-Bok
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Parkinson's disease (PD) is an irreversible neurological disorder with related locomotor dysfunction and is characterized by the selective loss of nigral neurons. PD can be experimentally induced by 6-hydroxydopamine (6-OHDA). It has been reported that reactive oxygen species, which deplete endogenous glutathione (GSH) levels, may play important roles in the dopaminergic cell death characteristic of PD. Fucoidan, a sulfated algal polysaccharide, exhibits anti-inflammatory and anti-oxidant actions. In this study, we investigated whether fucoidan can protect against 6-OHDA-mediated cytotoxicity in SH-SY5Y cells. Cytotoxicity was evaluated by using MTT and LDH assays. Fucoidan alleviated cell damage evoked by 6-OHDA dose-dependently. Fucoidan reduced the number of apoptotic nuclei and the extent of annexin-V-associated apoptosis, as revealed by DAPI staining and flow cytometry. Elevation of lipid peroxidation and caspase-3/7 activities induced by 6-OHDA was attenuated by fucoidan, which also protected against cytotoxicity evoked by buthionine-sulfoximine-mediated GSH depletion. Reduction in the glutathione/glutathione disulfide ratio induced by 6-OHDA was reversed by fucoidan, which also inhibited 6-OHDA-induced disruption of mitochondrial membrane potential. The results indicate that fucoidan may have protective action against 6-OHDA-mediated neurotoxicity by modulating oxidative injury and apoptosis through GSH depletion.

Quantitative Assessment of Tremor in PD Using a Wearable System on Both Hands (양손에서 웨어러블 시스템을 이용한 파킨슨병의 정량적 진전 평가)

  • Lee, Hongji;Kim, Sangkyong;Kim, Hanbyul;Jeon, Hyoseon;Park, Hyeyoung;Jung, Yujin;Kim, Jeonghwan;Jeon, Beomseok;Park, Kwangsuk
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.81-86
    • /
    • 2014
  • One of the methods for Parkinson's disease(PD) tremor evaluation is the Clinical Tremor Rating Scale(CTRS). However, the method has some limitations that clinician ratings can vary because the scores are subjectively rated. In addition, most researches usually collected data measured on the more affected arm. In this study, we developed a portable wearable system(SNUMAP system) for measuring PD tremor. The SNUMAP system captures 3-dimensional motion using tri-accelerometer and tri-gyroscope on finger and wrist. 40 PD patients participated in resting tremor and postural tremor tasks, while wearing the system on both hands simultaneously. Estimated tremor scores from Leave-One-Out Cross Validation for regression were highly correlated to the average clinician CTRS scores for rest tremor($r^2$ = 0.87, RMSE = 0.48) and postural tremor($r^2$ = 0.82, RMSE = 0.48). Therefore, the quantitative assessment model can improve treatment of PD patients.