• 제목/요약/키워드: Parking System

검색결과 576건 처리시간 0.022초

유비쿼터스 주차관리 시스템에서 내장 맵 및 센서를 이용한 인프라 독립 네비게이션 시스템 (Infrastructure-independent Navigation System Using Embedded Map and Built-in Sensors in the Ubiquitous Parking Management)

  • 프랭크 엘리호데;이재완
    • 인터넷정보학회논문지
    • /
    • 제13권5호
    • /
    • pp.93-104
    • /
    • 2012
  • 오늘날 사용하고 있는 네비게이션의 신뢰성은 기술적인 발전을 통해 상당히 높아졌다. GPS는 위성기반 위치추적 시스템으로 가장 광범위하게 사용되는 기술이다. 하지만 GPS기반 시스템은 위성이 정확한 뷰를 제공해줄 때에만 위치추적이 정확하다. 본 연구에서는 추적을 위해 내부구조에 의존하지 않는 독자적인 네비게이션을 제안한다. 스마트폰의 내장센서와 내장 맵을 사용하여 정확한 차량 위치추적을 구현한다. 성능평가 결과 정확한 차량의 위치 지원 면에서 우리가 제안한 시스템이 GPS보다 성능이 우수함을 나타내었다.

Ramp Loading 피코 슬라이더의 거동 해석 (Dynamics of a Pico Slider during the Ramp Loading Process)

  • 임윤철;김범준;조광표
    • Tribology and Lubricants
    • /
    • 제20권6호
    • /
    • pp.322-329
    • /
    • 2004
  • Recently, a load/unload(L/UL) system is adopted to the hard disk drive(HDD) due to its advantages such as lower power consumption, larger data zone, simpler fabrication of disk due to no bumped parking zone, and rarer contact between slider and media. An analysis of the transient motion for the slider is very important to design an air bearing surface(ABS) of the slider to secure the stable performance of the system. During the L/UL process, however, there are several issues occurred such as contact or collision between slider and media. Sometimes this will cause the system failure. In this study, the dynamics of a pico slider during the loading process are investigated through numerical simulation using FEM analysis and experiment. Ramp profile and angular velocity of the swing arm actuator are very important parameters for the design of L/UL system to avoid collision between slider and disk.

골조형 주차장의 Deck Plate 대체형 목제 시스템 거푸집 적용성 연구 (A Study on Application for Deck Plate Substitute Type Wood System Form of Frame Type Parking Lot)

  • 신용재;신운식;허재원;임남기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 추계 학술논문 발표대회 논문집
    • /
    • pp.123-126
    • /
    • 2006
  • Existing Deck Plate for a one of system forms, there is various advantage and application actual results increasing rapidly. But design of deck is depending on engineering data collections or design data on deck manufacture ordinarily. When construct, is responsible for deflection occurrence, And Because confirmation of crack occurrence region is impossible, there is difficulty of repair, reinforcement about crack and water leakage. According to got following conclusion as result that economic performance, preservation administration and repair reinforcement develops easy using steel truss snap tie by wedge pin on coating plywood that is slab Panel Wood System Form method of construction there is Deck Plate's advantage. (1) In stab lower part is exposed disjointing in which a criminal is fastened to be interrogated after construction acceptance and repair, reinforcement of crack is possible (2) Construction cost curtailment effect of about 29.2% than conventional type and about 10% than deck plate (3) Construction period reduction of about 3 day than conventional type and about 0.3 day than deck plate (4) Labor curtailment effect more than about $29{\sim}50%$ from conventional type

  • PDF

Attitude control in spacecraft orbit-raising using a reduced quaternion model

  • Yang, Yaguang
    • Advances in aircraft and spacecraft science
    • /
    • 제1권4호
    • /
    • pp.427-441
    • /
    • 2014
  • Orbit-raising is an important step to place spacecraft from parking orbits into working orbits. Attitude control system design is crucial in the success of orbit-raising. Several text books have discussed this design and focused mainly on the traditional methods based on single-input single-output (SISO) transfer function models. These models are not good representations for many orbit-raising control systems which have multiple thrusters and each thruster has impact on the attitude defined by all outputs. Only one published article is known to use a more suitable multi-input multi-output (MIMO) Euler angle model in spacecraft orbit-raising attitude control system design. In this paper, a quaternion based MIMO model for the orbit-raising attitude control system design is proposed. The advantages of using quaternion based model for orbit-raising control system designs are (a) there is no need for mathematical transformations because the attitude measurements are normally given by quaternion, (b) quaternion based model does not depend on rotational sequences, which reduces the chance of human errors, and (c) the singular point of reduced quaternion model is the farthest from the operational point where linearization is performed. We will show that performance of quaternion model based design will be as good as the performance of Euler angle model based design for orbit-raising problem.

Application of numerical simulation for the analysis and interpretation of pile-anchor system failure

  • Saleem, Masood
    • Geomechanics and Engineering
    • /
    • 제9권6호
    • /
    • pp.689-707
    • /
    • 2015
  • Progressive increase in population causing land scarcity, which is forcing construction industry to build multistory buildings having underground basements. Normally, basements are constructed for parking facility. This research work evaluates important factors which have caused the collapse of pile-anchor system at under construction five star hotel. 21 m deep excavation is carried out, to have five basements, after installation of 600 mm diameter cast in-situ contiguous concrete piles at plot periphery. To retain piles and backfill, soil anchors are installed as pit excavation is proceeded. Before collapse, anchors are designed by federal highway administration procedure and four anchor rows are installed with three strands per anchor in first row and four in remaining. However, after collapse, system is modeled and analyzed in plaxis using mohr-coulomb method. It is investigated that in-appropriate evaluation of soil properties, additional surcharge loads, lesser number of strands per anchor, shorter grouted body length and shorter pile embedment depth caused large deformations to occur which governed the collapse of east side pile wall. To resume work, old anchors are assumed to be standing at one factor of safety and then system is analyzed using finite element approach. Finally, it is concluded to use four strands per anchor in first new row and five strands in remaining three with increase in grouted and un-grouted body lengths.

Privacy-Preservation Using Group Signature for Incentive Mechanisms in Mobile Crowd Sensing

  • Kim, Mihui;Park, Younghee;Dighe, Pankaj Balasaheb
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1036-1054
    • /
    • 2019
  • Recently, concomitant with a surge in numbers of Internet of Things (IoT) devices with various sensors, mobile crowdsensing (MCS) has provided a new business model for IoT. For example, a person can share road traffic pictures taken with their smartphone via a cloud computing system and the MCS data can provide benefits to other consumers. In this service model, to encourage people to actively engage in sensing activities and to voluntarily share their sensing data, providing appropriate incentives is very important. However, the sensing data from personal devices can be sensitive to privacy, and thus the privacy issue can suppress data sharing. Therefore, the development of an appropriate privacy protection system is essential for successful MCS. In this study, we address this problem due to the conflicting objectives of privacy preservation and incentive payment. We propose a privacy-preserving mechanism that protects identity and location privacy of sensing users through an on-demand incentive payment and group signatures methods. Subsequently, we apply the proposed mechanism to one example of MCS-an intelligent parking system-and demonstrate the feasibility and efficiency of our mechanism through emulation.

공항의 계류장 관리 스케줄링 및 조정을 위한 전문가시스템 (Ramp Activity Expert System for Scheduling and Co-ordination)

  • 조근식;양종윤
    • 한국항행학회논문지
    • /
    • 제2권1호
    • /
    • pp.61-67
    • /
    • 1998
  • 이 연구에서는 항공기의 주기 문제를 해결하여 주는 스케줄링 시스템과 그 조정을 위한 전문가 시스템(RACES : Ramp Activity Co-ordination Expert System)을 설계 및 개발한 내용을 기술하고 있다. RACES는 공항에서 매일 발생하는 출발편 및 도착편 항공기를 브릿지(bridge)와 스팟(spot)에 배정하기 위해 인간 전문가(human expert)로부터 습득한 해당 분야의 지식(도메인 지식) 및 휴리스틱(heuristic)을 지식 베이스로 갖고 있다. 이 RACES는 브릿지/스팟과 항공기 간에 내적 관계, 예를 들어 승객 및 공항의 그라운드 핸들링(ground handling) 등과 같은 복잡하며 동적인 제약조건 들로부터 발생하는 복잡한 스케줄링 문제를 수반한다. 매일 발생하는 600편 정도의 항공기에 대한 주기장 관리 스케줄링이 인간 전문가에 의해 수행되어졌을 경우에는 약 4~5시간이 소요되는 반면 RACES에 의해 수행되어졌을 경우에는 약 20초 정도의 시간이 소요되었고 RACES로부터 얻어진 스케줄링 결과는 해당 분야의 전문가들로부터 인정되었다. RACES는 또한 예외적인 상황이 발생했을 경우에 스케줄의 부분적인 조정을 처리하도록 설계되었다. 하루의 스케줄링이 완료된 후 항공기의 변경 및 지연 메시지는 도메인 전문가의 지식을 바탕으로 스케줄링에 반영되어 스케줄이 조정되어야 한다. 동적 재스케줄링(reactive scheduling) 단계는 도메인 전문가의 지식 모델 분석을 통해 사용자 그래픽 인터페이스의 규칙과 시나리오로써 효과적으로 나타내어진다. 항공편의 변경 및 취소로 인해 발생되는 항공기 배치의 조정은 현재 스케줄에 반영되어져야 하기 때문에 이러한 항공기 배치의 조정은 동적 재스케줄링을 위해 메인 프레임으로부터 RACES에게 통보되어져야 하며 부분적인 재스케줄링을 처리하는 것에는 불규칙적인 요소들이 많기 때문에 RACES에 의해 스케줄의 조정이 반 자동적으로 수행된다.

  • PDF

온도변화에 강인한 EPB 시스템의 모델기반 고장검출 방법 (Robust Model Based Fault Detection of EPB System for Varying Temperature)

  • 문병준;박종국
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.26-30
    • /
    • 2009
  • In this paper, a robust model based fault detection for varying temperature is proposed, To develop a robust force estimation model, it needs temperature information because the force sensor's output is affected by a temperature variation. If an EPB system does not include a temperature sensor, the model has a much larger error than an EPB system with a built-in temperature sensor. Therefore, the temperature is estimated by using Ohm's law. The force model is applied with a motor current, battery voltage, operation mode, and the estimated temperature to detect a force sensor's abnormal signal fault. The residual is calculated by comparing the value of the measured force and the estimated force. Fault information is collected by using the output of the evaluated residual with the adaptive thresholds. A proposed robust model based fault detection for varying temperature was verified by HILS (Hardware in the Loop Simulation).

ACTIVE DIRECT TILT CONTROL FOR STABILITY ENHANCEMENT OF A NARROW COMMUTER VEHICLE

  • Piyabongkarn, D.;Keviczky, T.;Rajamant, R.
    • International Journal of Automotive Technology
    • /
    • 제5권2호
    • /
    • pp.77-88
    • /
    • 2004
  • Narrow commuter vehicles can address many congestion, parking and pollution issues associated with urban transportation. In making narrow vehicles safe, comfortable and acceptable to the public, active tilt control systems are likely to playa crucial role. This paper focuses on the development of an active direct tilt control system for a narrow vehicle that utilizes an actuator in the vehicle suspension. A simple PD controller can stabilize the tilt dynamics of the vehicle to any desired tilt angle. However, the challenges in the tilt control system design arise in determining the desired lean angle in real-time and in minimizing tilt actuator torque requirements. Minimizing torque requirements requires the tilting and turning of the vehicle to be synchronized as closely as possible. This paper explores two different control design approaches to meet these challenges. A Receding Horizon Controller (RHC) is first developed so as to systematically incorporate preview on road curvature and synchronize tilting with driver initiated turning. Second, a nonlinear control system that utilizes feedback linearization is developed and found to be effective in reducing torque. A close analysis of the complex feedback linearization controller provides insight into which terms are important for reducing actuator effort. This is used to reduce controller complexity and obtain a simple nonlinear controller that provides good performance.

주거환경 계획을 위한 거주자 요구 조사 -김해시를 중심으로- (The Dwellers Opinions about their Preferred Element of Designs for Housing in order to Enhance the Level of Housing Environment)

  • 최영순;박현옥
    • 한국주거학회논문집
    • /
    • 제9권2호
    • /
    • pp.79-87
    • /
    • 1998
  • This study was designed to know the dwellers opinions about their preferred element of for housing in order to enhance the level of environment through better housing plan. The main tasks of investigation were to: (1) determine the preferred elements of design for housing. (2) determine the usage of outdoor space dwellers prefer, (3) ascertain what kinds of management program and public facilities dwellers need. The sample, of 450 dwellers, was selected from the apartments in Kimhae. In complete questionnaires were not used in the analysis of data, thus, the total research sample consisted of 400 dwellers. The questionnare was developed by the researcher for this study. Data were collected during June 1996. Respones from 400 dwellers were processed by SAS package program using frequency counts, percentages and x2 to analyze the data. The major findings were: (1) that size of house, number of bed room, number of bath room, housing type that they want were significantly different according to the characteristic of the dwellers, (2) they preferred in individual heating system to the centralized heating system of the compound, and the preferrence differed significantly in accordance with what system they are using now, (3) they wanted to have more green zone than enlarging childrens' play ground or parking lot, (4) about the management program and public facilities they wanted, there was no significant difference according to the characteristic of the dwellers.

  • PDF