• Title/Summary/Keyword: Parking Detection

Search Result 87, Processing Time 0.026 seconds

Comer Detection of Parking Lot Using Multiple Echo Ultrasonic (초음파의 멀티 에코 기능을 이용한 주차 공간의 코너 감지법)

  • Kim, Byung-Sung;Park, Wan-Joo;Seo, Dong-Eun;Lee, Kwae-Hi;Kim, Dong-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.66-73
    • /
    • 2008
  • In this paper, ultrasonic range system which detects parking lot in parking area is studied. The important part for detecting parking lot accurately is to detect the first and second corners of possible parking lot, and for that, new method using multiple echo function is introduced in this paper. Many probabilistic methods have been used to reduce uncertainties of ultrasonic sensor for distance and location of objects. Method using multiple echo, however, gives accurates results as well as simple algorithm. For experiments in parking space, ultrasonic range system was attached to a Pioneer AT-2 and final parking space map was created in a fusion with position information from wheels of a Pioneer AT-2. We will show the results are compared with error of another methods.

Smart Vehicle Parking Management System using Image Processing

  • Waqas, Maria;Iftikhar, Umar;Safwan, Muhammad;Abidin, Zain Ul;Saud, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.161-166
    • /
    • 2021
  • The term parking management system usually refers to the custom built hardware intensive systems installed in building and malls. However, there are many places where such expensive solutions cannot be installed due to various reasons, like cost and urgent/temporary setup requirements. This project focuses on developing a parking management system based on image processing to detect vacant parking slot in an area where automated systems are not installed. Camera images of the parking area are subjected to image processing algorithm which marks virtual slots in the area and extracts occupancy information to guide the incoming drivers about availability and position of vacant spaces. The application consists of two interfaces: one for the guidance of the incoming drivers and the other one for the administrator. The later interface also informs the administrator if a car is not parked properly in the virtual slot. This parking system would reduce the stress and time wastage associated with car parking and would make the management of such areas less costly.

Fuzzy Model-Based Fault Detection Method of EPB System for Varying Temperature (온도변화에 강인한 EPB 시스템의 퍼지모델 기반 고장검출 방법)

  • Moon, Byoung-Joon;Kim, Dong-Han;Park, Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1009-1013
    • /
    • 2009
  • In this paper, a robust fault detection method for varying temperature based on fuzzy model is proposed. To develop a robust force estimation model, it needs temperature information because the output of force sensor is affected by a temperature variation. The nonlinear dynamic system, such as the parking force of the EPB (Electronic Parking Brake) system is necessary to have a higher order equation model. But, because of the calculation time, the higher order equation model is hard to be used in real application. In case of the lower order equation model, the result is not as accurate as acceptable. To solve this problem, the robust fuzzy model-based fault detection is developed. A proposed fault detection method for varying temperature is verified by HILS (hardware in the loop simulation).

A kinect-based parking assistance system

  • Bellone, Mauro;Pascali, Luca;Reina, Giulio
    • Advances in robotics research
    • /
    • v.1 no.2
    • /
    • pp.127-140
    • /
    • 2014
  • This work presents an IR-based system for parking assistance and obstacle detection in the automotive field that employs the Microsoft Kinect camera for fast 3D point cloud reconstruction. In contrast to previous research that attempts to explicitly identify obstacles, the proposed system aims to detect "reachable regions" of the environment, i.e., those regions where the vehicle can drive to from its current position. A user-friendly 2D traversability grid of cells is generated and used as a visual aid for parking assistance. Given a raw 3D point cloud, first each point is mapped into individual cells, then, the elevation information is used within a graph-based algorithm to label a given cell as traversable or non-traversable. Following this rationale, positive and negative obstacles, as well as unknown regions can be implicitly detected. Additionally, no flat-world assumption is required. Experimental results, obtained from the system in typical parking scenarios, are presented showing its effectiveness for scene interpretation and detection of several types of obstacle.

Lane Detection for Parking Violation Assessments

  • Kim, A-Ram;Rhee, Sang-Yong;Jang, Hyeon-Woong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.13-20
    • /
    • 2016
  • In this study, we propose a method to regulate parking violations using computer vision technology. A still color image of the parked vehicle under question is obtained by a camera mounted on enforcement vehicles. The acquired image is preprocessed through a morphological algorithm and binarized. The vehicle's shadows are detected from the binarized image, and lanes are identified using the information from the yellow parking lines that are drawn on the load. Whether parking is illegal is determined by the conformity of the lanes and the vehicle's shadow.

The development of fault monitoring system for lift type parking facility (승강기식 타워주차설비 고장 모니터링 시스템 개발)

  • Lee, W.T.;Cha, J.S.;Jeong, Y.K.;Kim, K.H.;Kim, B.U.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.739-741
    • /
    • 1999
  • This paper describes the fault monitoring system for lift type tower parking facilities. This system consists of tower parking facility control panel and monitoring computer, and offers real-time monitoring of parking status and fault detection, and status data acquisition of tower parking system using graphic user interface.

  • PDF

Comparative Analysis of IoT Enabled Multi Scanning Parking Model for Prediction of Available Parking Space with Existing Models

  • Anchal, Anchal;Mittal, Pooja
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.404-412
    • /
    • 2022
  • The development in the field of the internet of things (IoT) have improved the quality of the life and also strengthened different areas in the society. All cities across the world are seeking to become smarter. The creation of a smart parking system is the essential use case in smart cities. In recent couple of years, the number of vehicles has increased significantly. As a result, it is critical to make the use of technology that enables hassle-free parking in both public and private spaces. In conventional parking systems, drivers are not able to find free parking space. Conventional systems requires more human interference in a parking lots. To manage these circumstances there is an intense need of IoT enabled parking solution that includes the well defined architecture that will contain the following components such as smart sensors, communication agreement and software solution. For implementing such a smart parking system in this paper we proposed a design of smart parking system and also compare it with convetional system. The proposed design utilizes sensors based on IoT and Data Mining techniques to handle real time management of the parking system. IoT enabled smart parking solution minimizes the human interference and also saves energy, money and time.

Classification of Sides of Neighboring Vehicles and Pillars for Parking Assistance Using Ultrasonic Sensors (주차보조를 위한 초음파 센서 기반의 주변차량의 주차상태 및 기둥 분류)

  • Park, Eunsoo;Yun, Yongji;Kim, Hyoungrae;Lee, Jonghwan;Ki, Hoyong;Lee, Chulhee;Kim, Hakil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.15-26
    • /
    • 2013
  • This paper proposes a classification method of parallel, vertical parking states and pillars for parking assist system using ultrasonic sensors. Since, in general parking space detection module, the compressed amplitude of ultrasonic data are received, the analysis of them is difficult. To solve these problems, in preprocessing state, symmetric transform and noise removal are performed. In feature extraction process, four features, standard deviation of distance, reconstructed peak, standard deviation of reconstructed signal and sum of width, are proposed. Gaussian fitting model is used to reconstruct saturated peak signal and discriminability of each feature is measured. To find the best combination among these features, multi-class SVM and subset generator are used for more accurate and robust classification. The proposed method shows 92 % classification rate and proves the applicability to parking space detection modules.

Energy Saving Potentials of Ventilation Controls Based on Real-time Vehicle Detection in Underground Parking Facilities

  • Cho, Hong-Jae;Park, Joon-Young;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.331-340
    • /
    • 2013
  • The main topic of this paper is to show a possibility of indoor air quality enhancement and the fan energy savings in underground parking facilities by applying the demand-controlled ventilation (DCV) strategy based on the real-time variation of the traffic load. The established ventilation rate is estimated by considering the passing distance, CO emission rate, idling time of a vehicle, and the floor area of the parking facility. However, they are hard to be integrated into the real-time DCV control. As a solution to this problem, the minimum ventilation rate per a single vehicle is derived in this research based on the actual ventilation data acquired from several existing underground parking facilities. And then its applicability to the DCV based on the real-time variation of the traffic load is verified by simulating the real-time carbon monoxide concentration variation. The energy saving potentials of the proposed DCV strategy is also checked by comparing it with those for the current underground parking facility ventilation systems found in the open literature.

The Concept of Parking/Moving Vehicle Discrimination by Three-Line Scanner Imagery

  • Puntavungkour, Sompoch;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1427-1429
    • /
    • 2003
  • In our contribution, the new idea of parking/moving discrimination is proposed by using Three Line Scanner Imagery. The framework of our study consists of three main stages: preprocessing, vehicle detection and parking/moving detection respectively. First two stages of framework have been done in our previous work. Parking/ Moving Discrimination algorithm have been developed by using generic vehicle characteristics and some principle of photogrammetry. By using detected vehicles from our previous work, stopping/moving vehicles are able to discriminate. Moving vehicle is detected by detecting generic moving vehicle in TLS, inter-band gap. Stopping vehicle is verified by 3 dimensional viewing of Stereoscopic measurement. Finally, the conceptual framework has been done and the result will been realized soon.

  • PDF