• Title/Summary/Keyword: Park Construction Cost

Search Result 1,028, Processing Time 0.029 seconds

Development of the Program Management System for Mega Project in Urban Regeneration (도시재생사업의 메가프로젝트 건설관리시스템 개발)

  • Hyun, Chang-Teak;Kim, Ju-Hyung;Park, Il-Soo;Yu, Jung-Ho;Son, Bo-Sik;Hong, Tae-Hoon;Seo, Yong-Chil;Lee, Sang-Bum;Kim, Hyoung-Kwan;Kim, Chang-Wan
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.176-183
    • /
    • 2008
  • Recently, several large-scale Mega-Projects are being conducted. For these urban revitalization projects which requires many complex functions, the existing project management system based on single project level is limited in application. Therefore, our main objectives of this research are two 1) Develop a brand-new program management system(Prototype Ver 1.0) for mega-projects where various facilities are combined both horizontally and vertically. 2) Develop management strategies(Prototype Ver 1.0) based on the program level that enable the comprehensive management of a multiple various projects. The subtitles of this Research are i-PMIS(Program Management Information System) Development, Standardization & Optimization of Construction Life-Cycle Process, Comprehensive Project Cost & Process Management Technology, Effective and Optimized Integrated Performance Management Technology, and, we suggest to optimize the whole life cycle process, predict and respond to various risks, predict and control the process, the cost and the schedule, achieve maximum return on investment to the participating parties, and provide a brand-new Program-MIS including the visual-based web-portal platform to respond the changing business environments and decision making.

  • PDF

An Analysis of Best Practices for Efficient Utility Relocation and an Inquiry into the Applicability of SUE (효율적인 지하지장물 이설을 위한 모범사례분석 및 SUE 적용에 관한 연구)

  • Lee, Seung-Hyun;Baek, Seung-Ho;Tae, Yong-Ho;Ahn, Bang-Ryul;Park, Hyeon-Yong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.971-976
    • /
    • 2007
  • In the U.S., utility damages or utility delay caused by conflicts during the underground utility relocation is one of the weighty problem in the construction industry. Also, in domestic case, delay and additional cost caused by underground utility(i.e, electricity, communication, gas, water supply and sewerage) relocation has been happened so that there is an increase of claims for responsibility between owners and contractors. However, there is insufficient survey for the recent circumstance of additional cost for delay and design changes caused by utility relocation and shortage of enough research for solving and analyzing of causes and their ripple effect. This research presents a result of the study about the best practices of FHWA(Federal Highway Administration), SHAs(State Highway Agencies) and the utility companies managing utility relocation. Also, it presents the basic concept of SUE(Subsurface Utility Engineering), the most reliable tool of FHWA presented, and investigates the developing status about SUE in Korea. At the end of this paper, this research proposes a practical and more applicable study about the efficient utility relocation focusing on local industry.

  • PDF

A Bridge Management System Using Wireless Sensor Networks (무선 센서망을 이용한 교량 관리 시스템)

  • Park, Chan-Heum;Kim, Young-Rag;Kim, Geum-Deok;Park, Hee-Joo;Kim, Chong-Gun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5B
    • /
    • pp.824-832
    • /
    • 2010
  • In construction structure management, the effects of investigation by the professional manager is dependent on the cost, the inspection periods and methods. Therefore, effective and automated maintenance system for the target structure is required. Although some bridge monitoring systems are operating using wire based networks, the performance is not good enough to show sufficient ability as integrated bridge management system. In this paper, we design and implement an integrated bridge management system based on sensor networks. Two expert modules for bridge management and the integrated system management are provided. Moreover, web-based monitoring system is also designed for users at anywhere. The results show that the system is effective and readily available.

Damage-based optimization of large-scale steel structures

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1119-1139
    • /
    • 2014
  • A damage-based seismic design procedure for steel frame structures is formulated as an optimization problem, in which minimization of the initial construction cost is treated as the objective of the problem. The performance constraint of the design procedure is to achieve "repairable" damage state for earthquake demands that are less severe than the design ground motions. The Park-Ang damage index is selected as the seismic damage measure for the quantification of structural damage. The charged system search (CSS) algorithm is employed as the optimization algorithm to search the optimum solutions. To improve the time efficiency of the solution algorithm, two simplifying strategies are adopted: first, SDOF idealization of multi-story building structures capable of estimating the actual seismic response in a very short time; second, fitness approximation decreasing the number of fitness function evaluations. The results from a numerical application of the proposed framework for designing a twelve-story 3D steel frame structure demonstrate its efficiency in solving the present optimization problem.

Characteristic Analysis of Air-gap Control System in Performance Test Machine of a LIM for Railway Transit (철도차량용 선형유도전동기 성능시험기의 공극조절 시스템 특성 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song;Park, Hyun-June;Kwon, Sam-Young;Han, Kyung-Hee
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1955-1961
    • /
    • 2008
  • A lot of researches on a linear induction motor(LIM) have been advanced to realize a traction system with high efficiency and performance for railway transit for a long time. However, most of them are limited in design of a LIM part such as Primary and Secondary. At a LIM which is traveling, the change of an air-gap(It occurs by a construction tolerance of a secondary reaction plate) becomes the cause which decreases a smoother ride and the efficiency of railway transit system. Therefore, uniform air-gap operation of LIM is important issue to improve the system efficiency. However, the researches which control the air-gap length of the LIM with technical and high-cost problem have been not advanced a lot. Therefore, in this research, it is introduced an air-gap control system for performance test machine of a scale-downed LIM which is able to control the air-gap length of the LIM and monitor a variety of performance changes of the propulsion system, and conducted a research on feasibility of the system based on characteristic analysis.

  • PDF

Economic Analysis of Heat Pump System in Educational Building -Focused on the High School of Twenty Four Classes- (교육용 건축물의 히트펌프 냉난방시스템에 대한 경제성 분석 -24학급 규모의 고등학교를 중심으로-)

  • Park, Ryul;Park, Min-Yong;Kim, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.879-887
    • /
    • 2003
  • Buildings with heating and cooling systems have been increased, since the requirement of thermal comfort for residents is grown. Heating and cooling systems, have been changed from two separate systems to one multi-function system which includes both heating and cooling. Especially, heat pump heating and cooling system has been adopted for general classrooms in schools since education environment improvement project has been launched. This research suggests the best option for the heat pump heating and cooling system in educational buildings through economic assessments for four alternative systems based on electric heat pump (EHP) and gas engine driven heat pump (GHP), which are most widely used for elementary, middle and high schools. The model buildings are in the Y high school which has 24 classes of new construction building, which will be built soon. Annual energy consumption for alternative systems uses BECS 3.10, which can be used for system simulation.

Breakdown Structure and Weight Evaluation for Maintenance Items of Public Childcare Facilities (국·공립 보육시설의 운영유지 항목 분류체계 개발 및 중요도 산정)

  • Park, Hyeong-Jin;Park, In-Ji;Moon, Hyun-Seok;Koo, Kyo-Jin;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.2
    • /
    • pp.3-11
    • /
    • 2013
  • Recently according to increasement of the single family and dual-earner couples, the number of infants and young children stays on a long time to the childcare facilities. this is increasing the importance to improve the physical environment. However, the operating and maintenance costs of the national-public childcare facilities have taken effect of the unfair support issues of municipality's financial situation. Especially, because of the lack of the operating and maintenance costs of the facility and the shortage of facilities equipment maintenance repair costs, nursery operations and Maintenance items are needed to distribute appropriately. Therefore, this study is to estimate the importance to facility operations and maintenance items based on "Kindergarten and Childcare Facilities"presented at the Child Care Policy Study. we are expected to allocate appropriately of operation and maintenance cost of a limited budget. In particular, those can be considered for operation and maintenance cost about the National-Public Childcare Facilities and be determined to a safe and pleasant environment to kindergartens through the appropriate operations and maintenance support.

Development of DCPT Equipment based on IoT for Rod Tamping in Smart Construction (스마트건설 토공사 다짐 측정을 위한 IoT 기반의 DCPT 기술개발)

  • Park, Hong-Gi;Bae, Kyoung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.501-509
    • /
    • 2020
  • Earthwork in the construction field is a core process of construction, and it is used in almost all processes and is connected to the safety of the structure directly. Therefore, it is essential to analyze and confirm the road tamping through a plate bearing test and a field density test. The current analog measurement methods for road tamping measurement is difficult to check in real-time, accurate location information, time information, and the history management of workers in the field. Therefore, IoT (Internet of Things)-based DCPT (Dynamic Cone Penetration Test) was developed for a smart construction environment with a solution to the problem. The Smart DCPT system operated in a smartphone environment is IoT-based. The Smart DCPT system can apply various applications and has advantages of flexibility, low cost, and high efficiency. The IoT-based DCPT records the digital road tamping information, location information, time information, and worker information per measurement count. In addition, the various information is transmitted in real-time to the management center through a smartphone. This system is expected to contribute to the management of the construction process.

An Approach for Solid Modeling and Equipment Fleet Management Towards Low-Carbon Earthwork (저탄소 토공을 위한 솔리드 모델링 및 건설장비 플릿관리 방법론)

  • Kim, Sung-Keun;Kim, Gyu-Yeon;Park, Ju-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.501-514
    • /
    • 2015
  • Earthwork is a basic operation for all forms of civil works and affects construction time, cost and productivity. It is a mechanized operation that needs various construction equipment as a group and uses a lot of fuel for construction equipment. But, the problem is that earthwork operation is usually performed by equipment operator's heuristic and intuition, which can cause low productivity, high fuel consumption, and high carbon dioxide emission. As one of solutions for this problem, the fleet management system for construction equipment is suggested for effective earthwork planning, optimal equipment allocation, efficient machine operation, fast information exchange, and so forth. The purpose of this research is to suggest core methods for developing the equipment fleet management system. The methods include 3D solid parametric model generation, soil distribution using Cctree data structure, equipment fleet construction and equipment fleet operation. A simulation test is performed to verify the effectiveness of the equipment fleet management system in terms of equipment operating ratio, fuel usage, and $CO_2$ emission.

A study for recycling plan of excavated soil and filter cake of slurry shield TBM for road construction (도로공사 이수식 쉴드 TBM 굴착토 및 필터케이크 재활용방안 연구)

  • Nam, Sung-min;Park, Seo-young;Ahn, Byung-cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.599-615
    • /
    • 2022
  • In order to excavate underground tunnel most safely such as Han river, the slurry shield TBM method is applied to cope with face of high water pressure for many metro projects. In downtown subway project most of excavated soil is discharged externally whereas in road construction excavated soil is used as filling materials so it becomes important factor for success of the project. After excavated soil, weathered rock and soft rock are discharged with bentonite through discharge pipe to slurry treatment plant then those soils are separated in separation plant according to those size. Fine grained soil has been discarded together with filter cake but it is not toxic and can be mixed with coarse aggregate in proper ratio so this study is performed to find use of qualified filling material to meet quality standard. Therefore, in this study, legal standards and quality standards for the utilization of excavated soil of the slurry shield TBM method were examined and test was conducted to derive recycling way for filter cake and aggregate. And a plan for using it as a filling material for road construction was derived. Because bentonite is a clay composed of montmorillonite, and the excavated soil in the tunnel is also non-toxic, disposal of this material can waste social cost so it is expected to be helpful in the underground space development project that carries out the TBM project by recycling it as a valuable resource.