Yun Sang Jeong;Dae-Seong Lee;Da-Yeong Lee;Ihn-Sil Kwak;Young Seuk Park
Korean Journal of Ecology and Environment
/
v.55
no.2
/
pp.175-183
/
2022
In this study, 46 reservoirs in South Korea were characterized based on heavy metal concentration in sediments. We analyzed the relationship between heavy metal concentrations, physicochemical water quality and hydromorphological factors in each reservoir. Study reservoirs were classified into five groups of reservoirs, by hierarchical cluster analysis based on the similarities of heavy metal concentration. Group 1 had the most severe sediment heavy metal contamination among the groups, whereas Groups 2 and 3 showed low levels of heavy metal contamination. Group 4 displayed high value of Ni, and Group 5 showed high contamination of Pb, Cu, Cr, Ni, and Hg. Groups 1 and 5, which had high concentration of heavy metals in sediments, showed a high density of mines in the catchment of reservoirs. Heavy metal concentration was high in reservoirs with large capacity or the ones located at higher elevation, and also highly related with number of mines in the catchment of reservoir. This study can contribute to the systematic management of sediment heavy metals in reservoirs.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.225-227
/
2022
Now In Seoul, about 75,000 CCTVs are installed in 25 district offices. Each ward office in Seoul has built a control center for CCTV control and is building information such as people, vehicle types, license plate recognition and color classification into big data through 24-hour artificial intelligence intelligent image analysis. Seoul Metropolitan Government has signed MOUs with the Ministry of Land, Infrastructure and Transport, the National Police Agency, the Fire Service, the Ministry of Justice, and the military base to enable rapid response to emergency/emergency situations. In other words, we are building a smart city that is safe and can prevent disasters by providing CCTV images of each ward office. In this paper, the CCTV image is designed to extract the characteristics of the vehicle and personnel when an incident occurs through artificial intelligence, and based on this, predict the escape route and enable continuous tracking. It is designed so that the AI automatically selects and displays the CCTV image of the route. It is designed to expand the smart city integration platform by providing image information and extracted information to the adjacent ward office when the escape route of a person or vehicle related to an incident is expected to an area other than the relevant jurisdiction. This paper will contribute as basic data to the development of smart city integrated platform research.
The water and sewage system is an infrastructure that provides safe and clean water to people. In particular, since the water and sewage pipelines are buried underground, it is very difficult to detect system defects. For this reason, the diagnosis of pipelines is limited to post-defect detection, such as system diagnosis based on the images taken after taking pictures and videos with cameras and drones inside the pipelines. Therefore, real-time detection technology of pipelines is required. Recently, pipeline diagnosis technology using advanced equipment and artificial intelligence techniques is being developed, but AI-based defect detection technology requires a variety of learning data because the types and numbers of defect data affect the detection performance. Therefore, in this study, various defect scenarios are implemented using 3D printing model to improve the detection performance when detecting defects in pipelines. Afterwards, the collected images are performed to pre-processing such as classification according to the degree of risk and labeling of objects, and real-time defect detection is performed. The proposed technique can provide real-time feedback in the pipeline defect detection process, and it would be minimizing the possibility of missing diagnoses and improve the existing water and sewerage pipe diagnosis processing capability.
KIPS Transactions on Software and Data Engineering
/
v.12
no.4
/
pp.159-172
/
2023
In general, social problem-solving research aims to create important social value by offering meaningful answers to various social pending issues using scientific technologies. Not surprisingly, however, although numerous and extensive research attempts have been made to alleviate the social problems and issues in nation-wide, we still have many important social challenges and works to be done. In order to facilitate the entire process of the social problem-solving research and maximize its efficacy, it is vital to clearly identify and grasp the important and pressing problems to be focused upon. It is understandable for the problem discovery step to be drastically improved if current social issues can be automatically identified from existing R&D resources such as technical reports and articles. This paper introduces a comprehensive dataset which is essential to build a machine learning model for automatically detecting the social problems and solutions in various national research reports. Initially, we collected a total of 700 research reports regarding social problems and issues. Through intensive annotation process, we built totally 24,022 sentences each of which possesses its own category or label closely related to social problem-solving such as problems, purposes, solutions, effects and so on. Furthermore, we implemented four sentence classification models based on various neural language models and conducted a series of performance experiments using our dataset. As a result of the experiment, the model fine-tuned to the KLUE-BERT pre-trained language model showed the best performance with an accuracy of 75.853% and an F1 score of 63.503%.
KIPS Transactions on Software and Data Engineering
/
v.12
no.3
/
pp.133-140
/
2023
The performance of lithium ion batteries depends on the usage environment and the combination ratio of cathode materials. In order to develop a high-performance lithium-ion battery, it is necessary to manufacture the battery and measure its performance while varying the cathode material ratio. However, it takes a lot of time and money to directly develop batteries and measure their performance for all combinations of variables. Therefore, research to predict the performance of a battery using an artificial intelligence model has been actively conducted. However, since measurement experiments were conducted with the same battery in the existing published battery data, the cathode material combination ratio was fixed and was not included as a data attribute. In this paper, we define a training data model required to develop an artificial intelligence model that can predict battery performance according to the combination ratio of cathode materials. We analyzed the factors that can affect the performance of lithium-ion batteries and defined the mass of each cathode material and battery usage environment (cycle, current, temperature, time) as input data and the battery power and capacity as target data. In the battery data in different experimental environments, each battery data maintained a unique pattern, and the battery classification model showed that each battery was classified with an error of about 2%.
Hyunwoo Lee;Chan Park;Tae Hoon Bang;Hyung Min Ji;Jong-Woo Kim;Sun-Yong Chung
Journal of Oriental Neuropsychiatry
/
v.34
no.2
/
pp.95-113
/
2023
Objectives: To review studies evaluating effects of acupuncture on pain and depressive symptoms in fibromyalgia. Methods: Quantitative evidences (RCTs) were systematically reviewed. Literature were searched for a combination of fibromyalgia and depression (The Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE, medline (via PubMed), Kmbase, KISS, ScienceON, OASIS, CiNii, CNKI). Quantitative research findings were critically appraised by Cochrane risk of bias (RoB) tool and pooled. Meta-analysis was then conducted using Review Manager (RevMan) 5.4. Results: Eighteen studies were selected. American College of Rheumatology (ACR) classification criteria for Fibromyalgia Syndrome was most frequently used as diagnostic criteria for fibromyalgia. As for outcome measurement, Hamilton Rating Scale for Depression (HAMD), Visual Analog Scale (VAS), and Total Effective Rate (TER) were used most commonly. Meta-analysis of ten studies revealed that both Depression and VAS scores of the Acupuncture+Western Medicine group were significantly lower than those of Western Medicine group (Depression: SMD, -0.94, 95% CI, -1.17 to -0.70; VAS: MD, -1.51, 95% CI, -1.83 to -1.19). Also, TERs of both Acupuncture group and Acupuncture+Western Acupuncture+Western Medicine group were significantly higher than those of the Western Medicine group (OR: 2.38, 95% CI: 1.29 to 4.41; and OR: 7.40, 95% CI: 3.41 to 16.07). There was no significant difference in Depression or VAS score between the Acupuncture Group and the Western Medicine Group. Conclusions: Acupuncture might be an effective option for pain and depressive symptoms of fibromyalgia when it is combined with Western Medicine treatment. For more accurate results, more types of Korean medicine treatment should be conducted.
Ji-Hye Park;Jin-Ju Choi;Soo-Yeon Lim;Seon-Hee Yoo;Sun-Ho Lee
The Korean Journal of Nuclear Medicine Technology
/
v.27
no.1
/
pp.42-46
/
2023
Purpose The reference range described in Adrenocorticotropic Hormone reagent used in our laboratory is 10-60 pg/mL at 8 a.m. to 10 a.m., and 6-30 pg/mL at 8 p.m. to 10 p.m. However, in the case of outpatients, blood is mainly collected between 10 a.m. and 6 p.m., accounting for 57.8% of the total. Therefore, This study is intended to help make a more accurate diagnosis by reevaluating the reference range provided by the manufacturer of the Adrenocorticotropic Hormone reagent and setting split-timed reference range. Materials and Methods The patients collected blood before 10 a.m. were group A (68 people), and the patients collected blood after 10 a.m. were set to group B (80 people). A T-test was performed between groups to test their significance. And it was confirmed whether it was necessary to set the gender classification as a subgroup. The method of setting the reference range was calculated by the Bayesian's method and the Hoffmann's method. Results The reference range of Group A was 8.6 to 60.6 pg/mL by the Bayesian's method, and the Hoffmann's method was 3.6 to 61.3 pg/mL. The reference range of Group B was 6.9 to 50.5 pg/mL when applying the Bayesian's method, and the Hoffmann method's was 2.3 to 48.9 pg/mL. Conclusion This study was concluded that it was necessary to set the split-timed reference range. Through this study, the later the blood collection time, the lower the level of Adrenocorticotropic Hormone, indicating that blood collection time is important for patients with clinical significance. If a large number of subjects are selected and supplemented in the future, it is believed that systematic and accurate reference range can be set.
Kim, Thomas J.Y.;Kim, Hyungjung;Jung, Woo-Kyun;Lee, Jae Won;Park, Young Chul;Ahn, Sung-Hoon
Journal of Appropriate Technology
/
v.5
no.2
/
pp.70-81
/
2019
The garment industry is one of the most labor-intensive manufacturing industries, with its sewing process relying almost entirely on manual labor. Its costs highly depend on the efficiency of this production line and thus is crucial to determine the production rate in real-time for line balancing. However, current production tracking methods are costly and make it difficult for many Small and Medium-sized Enterprises (SMEs) to implement them. As a result, their reliance on manual counting of finished products is both time consuming and prone to error, leading to high manufacturing costs and inefficiencies. In this paper, a production tracking system that uses the sewing machines' energy consumption data to track and count the total number of sewing tasks completed through Convolutional Neural Network (CNN) classifiers is proposed. This system was tested on two target sewing tasks, with a resulting maximum classification accuracy of 98.6%; all sewing tasks were detected. In the developing countries, the garment sewing industry is a very important industry, but the use of a lot of capital is very limited, such as applying expensive high technology to solve the above problem. Applied with the appropriate technology, this system is expected to be of great help to the garment industry in developing countries.
Kim, Woo-Sung;Na, Hwa-Yeop;Oh, Sang-Hoon;Park, Sub-Ri;Son, Eui-Young
Journal of the Korean Orthopaedic Association
/
v.52
no.1
/
pp.59-64
/
2017
Purpose: To analyze the result of a repeat discectomy for ipsilateral recurrent lumbar disc herniation and to investigate the potential factors that influenced the outcomes for this surgery. Materials and Methods: Fifty-nine patients, who underwent reoperation after lumbar discectomy with a minimum follow-up period of 2 years, were reviewed. The surgical outcome was assessed using the visual analogue scale (VAS) and Macnab classification, and the recovery rate was calculated in accordance with VAS. A statistical analysis was carried out by SPSS to evaluate the possible factors that may have influenced the outcomes of the reoperation. Results: The rate of reoperation after lumbar disc surgery due to the recurrent disc herniation was 6.0% (59/983 cases). The average recovery rate of VAS from the 1st operation was approximately 77%, and from the 2nd operation was 71%. According to the Macnab criteria, the results were "excellent" or "good" in 96% of cases. Statistical analysis revealed that there was no difference of the average recovery rate (p<0.05). There is no additional instability after repeat discectomy. Factors, such as smoking, precipitating traumatic events, and diabetes mellitus did not have much influence on the average recovery rate after repeat discectomy for ipsilateral recurrent lumbar disc herniation. Conclusion: The outcomes of repeat discectomy were satisfactory. Moreover, factors, smoking, trauma history and diabetic mellitus, only had a minor impact on the outcomes of a repeat discectomy.
Kim, Whoan Jeang;Chang, Shann Haw;Yang, Hwa Yeol;Kwon, Won Jo;Sung, Hwan Il;Park, Kyung Hoon;Choy, Won Sik
Journal of the Korean Orthopaedic Association
/
v.52
no.1
/
pp.65-72
/
2017
Purpose: The purpose of this study was to evaluate the radiologic features of juxtafacet cyst and determine the correlation between these features and clinical outcome. Materials and Methods: We analyzed a total of 23 patients. The degree of facet joint degeneration was classified using the Fujiwara method. The facet joint angles were measured with an magnetic resonance imaging to determine whether there was a difference between the cystic lesion that was occupied and the cystic lesion that was not occupied. Disc degeneration was measured by the Pfirrmann classification method. The clinical result was evaluated using the Oswestry disability index score and visual analogue scale. Results: The L4-5 level of juxtafacet cyst was mostly affected, as found in previous studies. Facet joint arthritis was more severe within the side with the cystic lesion. Significant correlation was found between disc degeneration and juxtafacet joint cyst. All patients underwent wide decompression and fusion. Clinical result was excellent. No patients had signs of recurrence during the follow-up periods. Conclusion: Juxtafacet cyst has a significant correlation with facet joint degeneration. Therefore, aggressive surgical treatment-not just simple cyst excision-should be considered as the treatment option for juxtafacet cyst associated with degenerative lumbar disease.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.