• 제목/요약/키워드: Pareto optimization

검색결과 252건 처리시간 0.032초

Clustering Parts Based on the Design and Manufacturing Similarities Using a Genetic Algorithm

  • Lee, Sung-Youl
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제16권4호
    • /
    • pp.119-125
    • /
    • 2011
  • The part family (PF) formation in a cellular manufacturing has been a key issue for the successful implementation of Group Technology (GT). Basically, a part has two different attributes; i.e., design and manufacturing. The respective similarity in both attributes is often conflicting each other. However, the two attributes should be taken into account appropriately in order for the PF to maximize the benefits of the GT implementation. This paper proposes a clustering algorithm which considers the two attributes simultaneously based on pareto optimal theory. The similarity in each attribute can be represented as two individual objective functions. Then, the resulting two objective functions are properly combined into a pareto fitness function which assigns a single fitness value to each solution based on the two objective functions. A GA is used to find the pareto optimal set of solutions based on the fitness function. A set of hypothetical parts are grouped using the proposed system. The results show that the proposed system is very promising in clustering with multiple objectives.

Pareto Optimal Design of the Vehicle Body (차체의 팔렛토 최적 설계)

  • Kim, Byoung-Gon;Chung, Tae-Jin;Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제17권4호
    • /
    • pp.67-74
    • /
    • 2008
  • The important dynamic specifications in the aluminum automobile body design are the vibrations and crashworthiness in the views of ride comforts and safety. Thus, considerable effort has been invested into improving the performance of mechanical structures comprised of the interactive multiple sub-structures. Most mechanical structures are complex and are essentially multi-criteria optimization problems with objective functions retained as constraints. Each weight factor can be defined according to the effects and priorities among objective functions, and a feasible Pareto-optimal solution exists for the criteria-defined constraints. In this paper, a multi-criteria design based on the Pareto-optimal sensitivity is applied to the vibration qualities and crushing characteristics of front structure in the automobile body design. The vibration qualities include the idle, wheel unbalance and road shake. The crushing characteristic of front structure is the axial maximum peak load.

A Two-tier Optimization Approach for Decision Making in Many-objective Problems (고도 다목적 문제에서의 의사 결정을 위한 이중 최적화 접근법)

  • Lee, Ki-Baek
    • The Journal of the Korea Contents Association
    • /
    • 제15권7호
    • /
    • pp.21-29
    • /
    • 2015
  • This paper proposes a novel two-tier optimization approach for decision making in many-objective problems. Because the Pareto-optimal solution ratio increases exponentially with an increasing number of objectives, simply finding the Pareto-optimal solutions is not sufficient for decision making in many-objective problems. In other words, it is necessary to discriminate the more preferable solutions from the other solutions. In the proposed approach, user preference-oriented as well as diverse Pareto-optimal solutions can be obtained as candidate solutions by introducing an additional tier of optimization. The second tier of optimization employs the corresponding secondary objectives, global evaluation and crowding distance, which were proposed in previous works, to represent the users preference to a solution and the crowdedness around a solution, respectively. To demonstrate the effectiveness of the proposed approach, decision making for some benchmark functions is conducted, and the outcomes with and without the proposed approach are compared. The experimental results demonstrate that the decisions are successfully made with consideration of the users preference through the proposed approach.

Multi-Objective Optimization of a Fan Blade Using NSGA-II (NSGA-II 를 통한 송풍기 블레이드의 다중목적함수 최적화)

  • Lee, Ki-Sang;Kim, Kwang-Yong;Samad, Abdus
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2690-2695
    • /
    • 2007
  • This work presents numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis. Reynolds-averaged Navier-Stokes (RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

  • PDF

DESIGN OPTIMIZATION AND PERFORMANCE ANALYSIS OF INTERNAL COOLING PASSAGE WITH VARIOUS TYPE OF RIB TURBULATOR FOR HIGH PRESSURE TURBINE NOZZLE (전산유체해석을 이용한 다양한 요철 형상에 대한 고압터빈 노즐 냉각유로 최적화 및 냉각 성능 비교)

  • Lee, S.A.;Rhee, D.H.;Kang, Y.S.;Yee, K.J.;Kim, K.H.
    • Journal of computational fluids engineering
    • /
    • 제19권4호
    • /
    • pp.14-19
    • /
    • 2014
  • This study conducts shape optimization of rib turbulator on the internal cooling passage that has triangular cross-section of high pressure turbine nozzle. During optimization, various types of rib turbulator including angled, V-shaped, A-shaped and angled rib with intersecting rib are considered. Each type of rib turbulator is parameterized with attack angle(s), rib height, spacing ratio and bending/intersecting location. For optimization, Design of Experiment (DOE) and Kriging surrogate model are used to utilize computational resource more efficiently and Genetic Algorithm (GA) is used to search the optimum points. As a result, Pareto front of each type of rib turbulator with friction factor that relates to pressure drop in cooling passage and spatially averaged Nusselt number that relates to heat transfer on the wall is drawn and optimum points on the Pareto front are suggested.

Multi-objective Optimization of an Injection Mold Cooling Circuit for Uniform Cooling (사출금형의 균일 냉각을 위한 냉각회로의 다중목적함수 최적설계)

  • Park, Chang-Hyun;Park, Jung-Min;Choi, Jae-Hyuk;Rhee, Byung-Ohk;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제20권1호
    • /
    • pp.124-130
    • /
    • 2012
  • An injection mold cooling circuit for an automotive front bumper was optimally designed in order to simultaneously minimize the average of the standard deviations of the temperature and the difference in mean temperatures of the upper and lower molds for uniform cooling. The temperature distribution for a specified design was evaluated by Moldflow Insight 2010, a commercial injection molding analysis tool. For efficient design, PIAnO (Process Integration, Automation and Optimization), a commercial PIDO tool, was used to integrate and automate injection molding analysis procedure. The weighted-sum method was used to handle the multi-objective optimization problem and PQRSM, a function-based sequential approximate optimizer equipped in PIAnO, to handle numerically noisy responses with respect to the variation of design variables. The optimal average of the standard deviations and difference in mean temperatures were found to be reduced by 9.2% and 56.52%, respectively, compared to the initial ones.

An Application of Multi-Objective Global Optimization Technique for Internally Finned Tube (휜형 원형관의 형상 최적화를 위한 다목적 전역 최적화 기법의 응용)

  • Lee, Sang-Hwan;Lee, Ju-Hee;Park, Kyoung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제17권10호
    • /
    • pp.938-946
    • /
    • 2005
  • Shape optimization of internally finned circular tube has been peformed for periodically fully developed turbulent flow and heat transfer. The physical domain considered in this study is very complicated due to periodic boundary conditions both streamwise and circumferential directions. Therefore, Pareto frontier sets of a heat exchanger can be acquired by coupling the CFD and the multi-objective genetic algorithm, which is a global optimization technique. The optimal values of fin widths $(d_1,\;d_2)$ and fin height (H) are numerically obtained by minimizing the pressure loss and maximizing the heat transfer rate within ranges of $d_1=0.2\sim1.5\;mm,\;d_2=0.2\sun1.5\;mm,\;and\;H=0.2\sim1.5\;mm$. The optimal values of the design variables are acquired after the fifth generation and also compared to those of a local optimization algorithm for the same geometry and conditions.

Multi-Objective Shape Optimization of an Axial Fan Blade

  • Samad, Abdus;Lee, Ki-Sang;Kim, Kwang-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2008
  • Numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm(NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis is presented in this work. Reynolds-averaged Navier-Stokes(RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

Optimization of Multi-objective Function based on The Game Theory and Co-Evolutionary Algorithm (게임 이론과 공진화 알고리즘에 기반한 다목적 함수의 최적화)

  • Sim, Kwee-Bo;Kim, Ji-Yoon;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제12권6호
    • /
    • pp.491-496
    • /
    • 2002
  • Multi-objective Optimization Problems(MOPs) are occur more frequently than generally thought when we try to solve engineering problems. In the real world, the majority cases of optimization problems are the problems composed of several competitive objective functions. In this paper, we introduce the definition of MOPs and several approaches to solve these problems. In the introduction, established optimization algorithms based on the concept of Pareto optimal solution are introduced. And contrary these algorithms, we introduce theoretical backgrounds of Nash Genetic Algorithm(Nash GA) and Evolutionary Stable Strategy(ESS), which is the basis of Co-evolutionary algorithm proposed in this paper. In the next chapter, we introduce the definitions of MOPs and Pareto optimal solution. And the architecture of Nash GA and Co-evolutionary algorithm for solving MOPs are following. Finally from the experimental results we confirm that two algorithms based on Evolutionary Game Theory(EGT) which are Nash GA and Co-evolutionary algorithm can search optimal solutions of MOPs.

Multi-Objective Integrated Optimal Design of Hybrid Structure-Damper System Satisfying Target Reliability (목표신뢰성을 만족하는 구조물-감쇠기 복합시스템의 다목적 통합최적설계)

  • Ok, Seung-Yong;Park, Kwan-Soon;Song, Jun-Ho;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제12권2호
    • /
    • pp.9-22
    • /
    • 2008
  • This paper presents an integrated optimal design technique of a hybrid structure-damper system for improving the seismic performance of the structure. The proposed technique corresponds to the optimal distribution of the stiffness and dampers. The multi-objective optimization technique is introduced to deal with the optimal design problem of the hybrid system, which is reformulated into the multi-objective optimization problem with a constraint of target reliability in an efficient manner. An illustrative example shows that the proposed technique can provide a set of Pareto optimal solutions embracing the solutions obtained by the conventional sequential design method and single-objective optimization method based on weighted summation scheme. Based on the stiffness and damping capacities, three representative designs are selected among the Pareto optimal solutions and their seismic performances are investigated through the parametric studies on the dynamic characteristics of the seismic events. The comparative results demonstrate that the proposed approach can be efficiently applied to the optimal design problem for improving the seismic performance of the structure.