• Title/Summary/Keyword: Paraxial optical design

Search Result 26, Processing Time 0.025 seconds

Analysis of Arrayed Waveguide Grating Waveglength Filter using Wide Angle Beam Propagation Method (Wide Angle BPM 을 이용한 광도파로열 격자 파장 필터의 해석)

  • Park, Jun-O;Jeong, Yeong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.46-55
    • /
    • 2002
  • The key component to accomplish the WDM all optical network is an Arrayed Waveguide Grating(AWG) wavelength filter Numerical analysis is necessary for design and analysis of optical components like AWG wavelength filter. Beam Propagation Method(BPM) is the most widely-used method. In this paper, we analyze the difference between the paraxial BPM and the WA-BPM when they are applied to the analysis of InP/InGaAsP/InP AWG wavelength filter. The paraxial BPM is based on paraxial approximation, and the WA-BPM is based on the low order Pade approximant. The side lobe level(SLL) and insertion loss calculated from both methods are compared. The high order Pade approximant will to used to more accurate design and analysis of AWG.

New Design Method of Stable Lens System Against Chromatic Variation Based on Paraxial Ray Tracing

  • Lee, Jong-Ung
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.23-30
    • /
    • 2020
  • This paper presents a new method for designing a lens system stable against chromatic variation at a specified wavelength. Conventional lenses are corrected for chromatic aberration, but the new method suppresses chromatic changes of the marginal ray in the image-side. By doing so, paraxial properties of the lens system are stabilized against chromatic variation. Since the new method is based on paraxial ray tracing, the stabilizing conditions against chromatic variation are given by recurrence formulas. However, there is an analytic solution for the case of a cemented doublet in the air. A stable doublet at 405 nm wavelength is designed and analyzed.

Optical Design and Fabrication of a Large Telephoto Zoom Lens with Fixed f/2.8 and Light Autofocus Lens

  • Ryu, Jae Myung;Gang, Geon Mo;Lee, Hyuck Ki;Lee, Ki Woo;Heu, Min;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.629-637
    • /
    • 2015
  • Compact system cameras (CSCs) are commonly used nowadays and feature enhanced video functions and thin yet light interchangeable lenses. They differ from digital single-lens reflex (DSLR) cameras in their lack of mirror boxes. CSCs, however, have autofocus (AF) speeds lower than those of conventional DSLRs, requiring weight reduction of their AF groups. To ensure the marketability of large telephoto zoom lenses with fixed f/2.8 regardless of field angle variation, in particular, light weight AF groups are essential. In this paper, we introduce a paraxial optical design method and present a new, large, telephoto zoom lens with f/2.8 regardless of the field angle variation, plus a lightweight AF group consisting of only one lens. Using the basic paraxial optical design and optimization methods, we fabricated a new and lighter zoom lens system, including a single-lens, lightweight AF group with almost the same performance.

The Design of Telecentric Lenses and Fly-eye Lenses by Utilizing fθ Formula (fθ 공식을 활용한 텔레센트릭 렌즈 및 플라이아이 렌즈의 설계)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • We try to find the generalized structural equation that gives a perspective understanding for telecentric lenses through paraxial optical algebraic equations and preconditions from a highly experienced design sense. The equation is named the $f{\theta}$ formula and this formula is applied to single lenses, double Gauss lenses, Cooke triplet lenses and the compound lens composed of a Cooke triplet lens and a double Gauss lens step by step. And this formula is also applied to single fly-eye lenses plus a telecentric lens and double fly-eye lenses plus a telecentric lens in sequence. As a result, we can confirm that this $f{\theta}$ formula leads to intuitive optical design with a structural understanding for telecentric lens systems.

Non-imaging Optical Design of a Measurement Probe for LCD Display Used in a Color Analyzer (LCD 디스플레이용 색채계 렌즈에 관한 비결상 광학설계)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.239-244
    • /
    • 2011
  • We introduce Gaussian (or paraxial) optics that can be successfully applied to design, for use in a color analyzer, a non-imaging optical system on a measurement probe for LCD display. The color analyzer is used to decompose colored lights leaving from some measurement area on the LCD display to red, green, and blue. The color analyzer must include a condenser lens whose purpose is to gather colored lights to illuminate a small area on the sensor. In order to satisfy a reduction ratio between the measurement area and the sensing area with a non-imaging condition, a condenser lens is analytically treated by means of Gaussian optics so that good understanding of the non-imaging condenser lens is achieved as a good design is derived. As a result, the technique shows the necessity of analytical treatment in contrast to the design approach using only commercial software such as CODE-V, Light-Tools, and others. Of course, CODE V and Light-Tools are also utilized in this paper to confirm and complete the Gaussian optical design.

Calculation of Longitudinal Aberrations in Decentered Optical System with Non-symmetrical Elements (비대칭 오차요인이 있는 편심 광학계에서의 종수차 계산)

  • Ryu, Jae-Myung;Jo, Jae-Heung;Kang, Geon-Mo;Lee, Hae-Jin;Yoneyama, Suji
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.4
    • /
    • pp.151-160
    • /
    • 2010
  • When the optical image stabilization is implemented by moving one of the lens groups in a zoom system, decentration should be considered in the optical design process. Although it is partially possible to calibrate optical performances in an optical system with non-symmetrical elements by using a lot of commercial software, the results of calibrating longitudinal aberrations have some calibration errors because of the lack of precise consideration of decentered optical systems. In particular, the amount of distortion in paraxial ray tracing is different from the experimental value because paraxial ray tracing in the optical system is not useful. In this paper, in order to solve this problem being from various commercial lens design software, the set of equations of paraxial ray tracing in a zoom lens system with the non-symmetrical elements like decentration or tilt are theoretically induced. Then, the methods to calibrate the equations of longitudinal aberrations by using these equations in a non-symmetrical optical system are presented. The method of calibrating longitudinal aberrations can in practice be used to correct hand shaking effects in a zoom lens system.

Effect of Combination with Aspherical Lens in the Micro Optical System Design (마이크로 광학계의 설계에서 비구면 렌즈의 조합 효과)

  • 김명중;김한섭;박규열;전종업;김의중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1422-1425
    • /
    • 2003
  • In the design of optical system, important variables of optical system (including indices, shapes, spaces, stops. etc.) must manipulate in order to balance out offensive aberration. In this paper, it carried out a basic study on the design of micro optical system usable for the acquaintance of visual information in the particular conditions such as capsule type endoscopes. In this study, specification for design of optical system selected voluntarily and the basic design of optical system carried out by using the ray tracing method on the assumption that ideal lenses without aberrations. In the designed optical system, the optimization including aberration correction and the performance evaluation of optical system carried out by using the CODE-V. The final designed optical system consists of seven sheets of lenses. Also the results of performance evaluation. the micro optical system combined with aspherical lenses was confirmed to have improved optical performance as compared with the micro optical system consisted of spherical lenses.

  • PDF

Graphical Selection of Optical Materials Using an Expanded Athermal Glass Map and Considering the Housing Material for an Athermal and Achromatic Design

  • Lim, Tae-Yeon;Kim, Yeong-Sik;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.531-536
    • /
    • 2015
  • This paper presents a new graphical method for selecting a pair of optical glass and housing materials to simultaneously achromatize and athermalize a multilens system composed of many elements. To take into account the lens spacing and housing, we quantify the lens power, chromatic power, and thermal power by weighting the ratio of the paraxial ray height at each lens to them. In addition, we introduce the equivalent single lens and the expanded athermal glass map including a housing material. Even though a lens system is composed of many elements, we can simply identify a pair of glass and housing materials that satisfies the athermal and achromatic conditions. Applying this method to design a black box camera lens equipped with a 1/4-inch image sensor having a pixel width of $2{\mu}m$, the chromatic and thermal defocusings are reduced to less than the depth of focus, over the specified ranges in temperature and frequency.

Numerical Calculation Method for Paraxial Zoom Loci of Complicated Zoom Lenses with Infinite Object Distance by Using Gaussian Bracket Method (가우스 괄호법을 이용한 무한 물점을 갖는 복잡한 줌 렌즈의 수치해석적인 근축광선 줌 궤적 추적법)

  • Yoo, Nam-Jun;Kim, Won-Seob;Jo, Jae-Heung;Ryu, Jae-Myung;Lee, Hae-Jin;Kang, Geon-Mo
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.410-420
    • /
    • 2007
  • We theoretically derive the set of utilizable paraxial zoom locus equations for all complicated zoom lens systems with infinite object distance, such as a camera zoom lens, by using the Gaussian bracket method and the matrix representation of paraxial ray tracing. And we make the zoom locus program according to these equations in Visual Basic. Since we have applied the paraxial ray tracing equations into Gaussian bracket representation, the resultant program systematically simplifies various constraints of the zoom loci of various N group types. Consequently, the solutions of this method can be consistently used in all types of zoom lens in the step of initial design about zoom loci. Finally, in order to verify the usefulness of this method, we show that one example among 4 groups and that among 5 groups, which are very complex zoom lens systems, can be rapidly and with versatility traced through various interpolations by using this program.