• Title/Summary/Keyword: Parasitic parameters

Search Result 116, Processing Time 0.023 seconds

Basic Analysis of Heat and Mass Transfer Characteristics of Tubular Membrane Humidifier for Proton Exchange Membrane Fuel Cell (이온교환막 연료전지용 원통형 막 가습기의 열 및 물질전달특성 기초 연구)

  • Bae, Ho-June;Ahn, Kook-Young;Lee, Young-Duk;Kang, Sang-Kyu;Yu, Sang-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.473-480
    • /
    • 2011
  • The proton exchange membrane (PEM) fuel cell system is critically dependent on the humidity, which should be properly maintained over the entire operating range. A membrane humidifier is used for the water management in the PEMFC because of the membrane humidifier's reliable performance and zero parasitic power loss. In the PEMFC system, the membrane humidifier is required to provide appropriate humidity for the design point of the fuel cell. Although the performance of the fuel cell depends on the performance of the humidifier, few studies have provided a systematic analysis of the humidifier. We carry out an experimental analysis of the membrane humidifier using a vapor condensation bottle. The dry air pressure, water flow temperature, and air flow rate were chosen as the operating parameters. The results show that the time constant for the dynamic response of the membrane humidifier is relatively short, but additional analysis should be carried out.

Analyzing of CDTA using a New Small Signal Equivalent Circuit and Application of LP Filters (새로운 소신호 등가회로를 활용한 CDTA의 해석 및 저역통과 필터설계)

  • Bang, Junho;Song, Je-Ho;Lee, Woo-Choun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7287-7291
    • /
    • 2014
  • A CDTA (current differencing transconductance amplifier) is an active building block for current mode analog signal processing with the advantages of high linearity and a wide frequency bandwidth. In addition, it can generate a stable voltage because all the differencing input current flows to the grounded devices. In this paper, a new small signal equivalent circuit is proposed to analyze a CDTA. The proposed small signal equivalent circuit provides greater precision in analyzing the magnitude and frequency response than its previous counterparts because it considers the parasitic components of the input, internal and output terminal. In addition, observations of the changes made in various devices, such as the resistor (Rz) confirmed that those devices heavily influence the characteristics of CDTA. The designed parameters of the proposed small signal equivalent circuit of the CDTA provides convenience and accuracy in the further design of analog integrated circuits. For verification purposes, a 2.5 MHz low pass filter was designed on the HSPICE simulation program using the proposed small signal equivalent circuit of CDTA.

Stacked Pad Area Away Package Modules for a Radio Frequency Transceiver Circuit (RF 송수신 회로의 적층형 PAA 패키지 모듈)

  • Jee, Yong;Nam, Sang-Woo;Hong, Seok-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.10
    • /
    • pp.687-698
    • /
    • 2001
  • This paper presents a three dimensional stacked pad area away (PAA) package configuration as an implementation method of radio frequency (RF) circuits. 224MHz RF circuits of intelligence traffic system(ITS) were constructed with the stacked PAA RF pakage configuration. In the process of manufacturing the stacked PAA RF pakage, RF circuits were partitioned to subareas following their function and operating frequency. Each area of circuits separated to each subunits. The operating characteristics of RF PAA package module and the electrical properties of each subunits were examined. The measurement of electrical parameters for solder balls which were interconnects for stacked PAA RF packages showed that the parasitic capacitance and inductance were 30fF and 120pH, respectively, which might be negligible in PAA RF packaging system. HP 4396B network/spectrum analyzer revealed that the amplification gain of a receiver and transmitter at 224 MHz was 22dB and 27dB, respectively. The gain was 3dB lower than designed values. The difference was probably generated from fabrication process of the circuits by employing commercial standard

  • PDF

Avoidance of Internal Resonances in Hemispherical Resonator Assemblies from Fused Quartz Connected by Indium Solder

  • Sarapuloff, Sergii A.;Rhee, Huinam;Park, Sang-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.835-841
    • /
    • 2013
  • Modern solid-state gyroscopes (HRG) with hemispherical resonators from high-purity quartz glass and special surface superfinishing and ultrathin gold coating become the best instruments for precise-grade inertial reference units (IRU) targeting long-term space missions. Designing of these sensors could be a notable contribution into development of Korea as a space nation. In participial, 40mm diameter thin-shell resonator from high-purity fused quartz, fabricated as a single-piece with its supporting stem has been designed, machined, etched, tuned, tested, and delivered by STM Co. (ATS of Ukraine) several years ago; an extremely-high Q-factor (upto 10~20 millions) has been shown. Understanding of the best way how to match such a unique sensor with inner glass assembly of the gyro means how to use the high potential in a maximal extent; and this has become the urgent task. Inner quartz glass assembly has a very thin indium (In) layer soldered the resonator and its silica base (case), but effects of internal resonances between operational modal pair of the shell-cup and its side (parasitic) modes can notable degrade the potential of the sensor as a whole, instead of so low level of resonator's intrinsic losses. Unfortunately, there are special combinations of dimensions of the parts (so-called, "resonant sizes"), when intensive losses of energy occurs. The authors proposed to use the length of stem's fixture as an additional design parameter to avoid such cases. So-called, a cyclic scheme of finite element method (FEM) and ANSYS software were employed to estimate different combinations of gyro assembly parameters. This variant has no mismatches of numerical origin due to FEM's discrete mesh. The optimum length and dangerous "resonant lengths" have been found. The special attention has been paid to analyses of 3D effects in a cup-stem transient zone, including determination of a difference between the positions of geometrical Pole of the resonant hemisphere and of its "dynamical Pole", i.e., its real zone of oscillation node. Boundary effects between the shell (cup) and 3D short "beams" (inner and outer stems) have been ranged. The results of the numerical experiments have been compared with the classic model of a quasi-hemispherical shell band with inextensional midsurface, and the solution using Rayleigh's functions of the $1^{st}$ and $2^{nd}$ kinds. To guarantee the truth of the recommended sizes to a designer of the real device, the analytical and FEM results have been compared with experimental data for a party of real resonators. The consistency of the results obtained by different means has been shown with errors less than 5%. The results notably differ from the data published earlier by different researchers.

  • PDF

Schottky barrier overlapping in short channel SB-MOSFETs (Short Channel SB-FETs의 Schottky 장벽 Overlapping)

  • Choi, Chang-Yong;Cho, Won-Ju;Chung, Hong-Bay;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.133-133
    • /
    • 2008
  • Recently, as the down-scailing of field-effect transistor devices continues, Schottky-barrier field-effect transistors (SB-FETs) have attracted much attention as an alternative to conventional MOSFETs. SB-FETs have advantages over conventional devices, such as low parasitic source/drain resistance due to their metallic characteristics, low temperature processing for source/drain formation and physical scalability to the sub-10nm regime. The good scalability of SB-FETs is due to their metallic characteristics of source/drain, which leads to the low resistance and the atomically abrupt junctions at metal (silicide)-silicon interface. Nevertheless, some reports show that SB-FETs suffer from short channel effect (SCE) that would cause severe problems in the sub 20nm regime.[Ouyang et al. IEEE Trans. Electron Devices 53, 8, 1732 (2007)] Because source/drain barriers induce a depletion region, it is possible that the barriers are overlapped in short channel SB-FETs. In order to analyze the SCE of SB-FETs, we carried out systematic studies on the Schottky barrier overlapping in short channel SB-FETs using a SILVACO ATLAS numerical simulator. We have investigated the variation of surface channel band profiles depending on the doping, barrier height and the effective channel length using 2D simulation. Because the source/drain depletion regions start to be overlapped each other in the condition of the $L_{ch}$~80nm with $N_D{\sim}1\times10^{18}cm^{-3}$ and $\phi_{Bn}$ $\approx$ 0.6eV, the band profile varies as the decrease of effective channel length $L_{ch}$. With the $L_{ch}$~80nm as a starting point, the built-in potential of source/drain schottky contacts gradually decreases as the decrease of $L_{ch}$, then the conduction and valence band edges are consequently flattened at $L_{ch}$~5nm. These results may allow us to understand the performance related interdependent parameters in nanoscale SB-FETs such as channel length, the barrier height and channel doping.

  • PDF

An Investigation of Higher Order Forces on a Vertical Truncated Cylinder

  • Boo, Sung-Youn
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.214-214
    • /
    • 2003
  • During a model test of Hutton TLP, a "ringing" response was first observed about 20 years ago. This phenomenon is a resonant build up over the time of wave period and this burst-like motion can cause the extreme load on the TLP tether. It is often detected in the large and steep irregular waves but the generation mechanism leading to the "ringing" is not yet well understood. According to the research since then, the higher order harmonic components may account for the "ringing" on the floating offshore structures. The main purpose of the present research is, thus, to measure the higher harmonic forces exerted on a vertical truncated circular column and to compare them with available data. A vertical truncated cylinder with a diameter of 3.5inch and a draft of 10.5inch is used as a test structure, which is a scaled model of ISSC TLP column. The cylinder is installed at a distance of 45ft from the wave maker in order to avoid parasitic waves created in the wave flap. Attached to the upper part of the cylinder are two force gages to measure the horizontal (surge) and vertical (heave) forces on the cylinder. The incoming waves are Stokes waves with a slope ranging from 0.06 to 0.24. The forces and waves are measured for 60 seconds with a sampling rate of 50 Hz. Among the recorded data, the first 10 waves are excluded because of transient behavior of the waves and the next The horizontal and vertical forces are analyzed up to 5th order harmonics. The horizontal forces are then compared to the values from the theoretical model called "FNV model". In addition, force transfer functions are also investigated. Major findings in this research are below. 1) The first order forces measured are slightly larger than the theoretical values of "FNV model" 2) The "FNV model" considerably overpredicts the second order forces. 3) The larger the amplitude and more extreme the wave slope, the smaller the predictions are compared to the experimental. 4) The higher harmonic forces are significantly smaller than the first harmonic force for all wave parameters. 5) The normalized forces vs. waves slopes are almost constant in the lower harmonics but vary a lot in the higher harmonics. 6) The trend of forces is more nonlinear in the horizontal forces than in the vertical forces as the wave slope increases. 7) The part of the results above is also observed by other researchers and confirmed again through the present work.

  • PDF