• Title/Summary/Keyword: Parasitic Element

Search Result 121, Processing Time 0.024 seconds

DUAL BAND SLOT COUPLED MULTIPLE PATCH ANTENNA WITH BROAD BANDWIDTH AND HIGH DIRECTIVITY FOR WIRELESS ACCESS POINT (무선 액세스 포인트용 광대역의 고지향성 이중대역 슬롯 결합 다중 패치안테나)

  • Yeom, Insu;Kang, Seonghun;Jung, Changwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3074-3078
    • /
    • 2014
  • We implemented a dual-band slot-coupled patch (SCP) antenna for the external access point (AP) of the wireless local area network (WLAN) band. The antennas consist of two radiators on three layers. The first radiator is a slotted bow tie antenna operating at the 2.4-2.483 GHz band. The second radiator is a patch antenna with parasitic elements operating at 4.095-5.845 GHz. The high gain and broad bandwidth is important element of wireless access. To enhance the bandwidth, a coupled feeding was used in the first radiator and a parasitic patch was used in the second radiator. We used a parasitic patch and chock to improve the directivity and isolation in both radiators. The porposed antenna was designed by EM simulation tool and measured. The S11 of the antenna was less than -11dB (VSWR 1.8:1) at operating frequency. The peak gain was more than 6 dBi in the first antenna and more than 8 dBi in the second antenna.

7×7 MIMO System Using Extended 13-Element ESPAR Antenna (확장 13-Element EPSAR 안테나를 사용한 7×7 MIMO 시스템)

  • Bok, Junyeong;Lee, Seung Hwan;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.2
    • /
    • pp.69-76
    • /
    • 2014
  • Multiple-input and multiple-output (MIMO) technique is used in many communication fields in order to increase the channel capacity. However, this MIMO system has difficulty of miniaturization of antenna size due to the multiple RF chains Also, multiple RF chain raises some problems which increase power consumption at RF circuit and degrade the system performance due to the interference between RF chains. Because of these reasons, beamspace MIMO (BS-MIMO) technique with only single RF chain was proposed for MIMO transmission. This BS-MIMO system basically uses electronically steerable parasitic array radiator (ESPAR) antenna. Existing ESPAR antenna has a 5-element structure. So, it is possible to do only $3{\times}3$ MIMO transmission. Therefore, in order to extend BS-MIMO dimension, extension of ESPAR antenna structure is essential. In this paper, we show that BS-MIMO dimension can be increased according to the extension of structure of the ESPAR antenna, as in the conventional MIMO techniques. For example, we show that it is possible to design the $7{\times}7$ BS-MIMO transmissions with the 13-element ESPAR antenna. Also, when the number of parasitic elements of ESPAR antenna increases by two elements, MIMO dimension is expanded by 1.

Design of S-band Turnstile Antenna Using the Parasitic Monopole (기생 모노폴을 이용한 S-band Turnstile 안테나 설계)

  • Lee, Jung-Su;Oh, Chi-Wook;Seo, Gyu-Jae;Oh, Seung-Han
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1082-1088
    • /
    • 2006
  • A turnstile antenna using the parasitic monopole has been developed for STSAT-2 TT&C application. The antenna consists of two radiating elements; a bow-tie dipole and a parasitic monopole. The bow-tie dipole is main radiating element, used a bow-tie structure for bandwidth improvement and size reduction. The parasitic monopole improved beamwidth and axial ratio. The input impedance of the antenna is about 50 ohm without a matching circuit. The proposed antenna has beamwidth of $>140^{\circ}$, axial ratio of < 3 dB and VSWR of < 1.5 in the band of $2.075{\sim}2.282GHz$.

Design and Implementation of Monopole Antenna with Parasitic Element of Spiral Shape and L-Resonator (스파이럴 구조 기생 소자와 L자형 공진기를 갖는 모노폴 안테나 설계 및 구현)

  • Yoon, Kwang-Yeol;Lee, Seungwoo;Kim, Jang-Yeol;Rhee, Seung-Yeop;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • In this paper, we designed and implemented the planar monopole antenna using the coupling effect for the multi-band characteristic. A parasitic element for the multi-band characteristic based on a rectangular patch with single resonance is inserted. Spiral shaped parasitic element is used for minimizing the antenna size and obtaining the multi-resonance characteristic. The frequency characteristics are modified and optimized by varying specific parameters. By inserting an L-shaped resonator at both sides of the feed line which connected through the via hole to the ground plane, unnecessary frequency bands are eliminated. Proposed antenna dimension is $40{\times}60{\times}1mm^3$. It is fabricated on the FR-4 substrate(${\varepsilon}_r$=4.4) using a microstrip line of $50{\Omega}$ for impedance matching. By measurement results, the characteristic of the return loss under -10 dB are 1.714~2.496 GHz, 2.977~4.301 GHz, and 4.721~6.315 GHz, and the radiation patterns have omni-directional shapes.

Parametric Study of Slow Wave Structure for Gain Enhancement and Sidelobe Suppression (이득 증가와 부엽 억제를 위한 저속파 구조의 설계변수에 대한 연구)

  • Park, Se-Been;Kang, Nyoung-Hak;Eom, Soon-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1059-1068
    • /
    • 2016
  • This paper proposes slow wave structure(SWS) utilized to increase antenna gain of printed dipole antenna(PDA) and to suppress sidelobe level simultaneously, and makes sure of electrical characteristics of the antenna according to parameter variations of components of the slow wave structure. The printed slow wave structure which is composed of a dielectric substrate and a metal rods array is located on excited direction of the PDA, affecting the radiation pattern and its intensity. Parasitic elements of the metal rods are arrayed in narrow consistent gap and have a tendency to gradually decrease in length. In this paper, array interval, element length, and taper angle are selected as the parameter of the parasitic element that effects radiation characteristics. Magnitude and phase distribution of the electrical field are observed and analyzed for each parameter variations. On the basis of these results, while the radiation pattern is analyzed, array methods of parasitic elements of the SWS for high gain characteristics are provided. The proposed antenna is designed to be operated at the Wifi band(5.15~5.85 GHz), and parameters of the parasitic element are optimized to maximize antenna gain and suppress sidelobe. Simulated and measured results of the fabricated antenna show that it has wide bandwidth, high efficiency, high gain, and low sidelobe level.

Dualband Internal Antenna for GPS/PCS Handset (GPS/PCS 단말기용 듀얼밴드 내장형 안테나)

  • 정병운;이학용;이종철;김종헌;김남영;이병제;박면주
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.6
    • /
    • pp.550-557
    • /
    • 2003
  • In this paper, two dualband internal antennas for GPS/PCS handset are proposed. At first, the monopole antenna with parasitic dipole element is designed to print PCB of handset directly. At second, the antenna with bended loop structure is designed to bend to use internal space of handset maximumly. The proposed dualband internal antennas provide a 2:1 VSWR bandwidth of over 19.1 % which are possible to cover two bands at once. the antennas have a gain between -0.4 and 3.33 ㏈i at all bands and they have almost omni-directional patterns.

Analysis and Suppression of Parasitic Resonance in Millimeter-wave Ceramic Packages (밀리미터파용 세라믹 패키지에서의 기생공진 해석 및 억제 방법)

  • Seo, Jae-Ok;Kim, Jin-Ryang;Lee, Hae-Yeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.2
    • /
    • pp.101-107
    • /
    • 2002
  • High performance packages must protect circuits from the internal leakaged-electromagnetic fields as well as the surrounding. In this paper, we characterized an electromagnetically-shielded millimeter-wave ceramic package from 20 to 40 ㎓ using FEM(Finite Element Method). From these calculation results, the parasitic resonance is observed at 33.4 ㎓. We use metal-filled via-holes at the ceramic package walls and resonance has been suppressed in a frequency range from 20 to 40 ㎓. These calculation results will be helpful for MMIC packaging using electromagnetically-shielded millimeter-wave ceramic packages.

Modified Yagi dipole Antenna for WLAN Dual-band Operation (WLAN 이중 대역 동작을 위한 수정된 야기 다이폴 안테나)

  • Park, Sung-Il;Jung, Jin-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.533-538
    • /
    • 2018
  • For WLAN dual-band operation, a modified Yagi dipole antenna is presented. The modified dipole antenna consists of a dipole antenna with open sleeves and parasitic elements. The parasitic elements are used for the practical application of the radiation patterns and high-gain operation at the WLAN dual band. The experimental results showed that the achieved impedance bandwidths were 320 MHz (2.4 to 2.72 GHz) and 640 MHz (5.04 to 5.68 GHz), respectively. The measured maximum gain at the two WLAN bands was 7.74 dBi and 6.93 dBi, respectively.

Controllable Band-Notched Slot Antenna for UWB Communication Systems

  • Kueathaweekun, Weerathep;Anantrasirichai, Noppin;Benjangkaprasert, Chawalit;Nakasuwan, Jintana;Wakabayashi, Toshio
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.674-683
    • /
    • 2012
  • We propose a slot antenna consisting of a rectangular slot on the ground plane, fed by a microstrip line with a rectangular-ring-shaped tuning stub that can be deployed in ultra-wideband (UWB) communication systems to avoid interference with wireless local area network (WLAN) communication. Our antenna can achieve a single band-notched property from the 5 GHz frequency to the 6 GHz frequency owing to a controllable band notch that uses L- and J-shaped parasitic elements. The antenna characteristics can be modified to tune the band-notched property (4 GHz to 5 GHz or 6 GHz to 7 GHz) and the bandwidth of the band notch (1 GHz to 2 GHz). Furthermore, the shifted notch with enhanced width of the band notch from 1 GHz to 1.5 GHz is described in this paper. The UWB slot antenna and L- and J-shaped parasitic elements also provide the band-rejection function for reference in the WiMAX (3.5 GHz) and WLAN (5 GHz to 6 GHz) regions of the spectrum. Experiment results evidence the return loss performance, radiation patterns, and antenna gains at different operational frequencies.