In this paper, we present a pilot system that can extract paraphrases from a parallel corpus using to-training method. Paraphrases are useful for the applications that should rreate a varied ind fluent text, such as machine translation, question-answering system, and multidocument summarization system. One of the difficulties in extracting paraphrases is to find a rich source from which we can extract paraphrases. The bible is one of the good sources fur extracting paraphrases as it has several Korean versions in which every sentence can be easily aligned by the chapter and the verse. We ran extract not only the lexical-level paraphrases but also the phrasal-level paraphrases from the parallel corpus which consists of the bibles using co-training method.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.9
/
pp.4814-4832
/
2019
Plagiarism detection is increasingly exploiting text alignment. Text alignment involves extracting the plagiarism passages in a pair of the suspicious document and its source document. The heuristics have achieved excellent performance in text alignment. However, the further improvements of the heuristic methods mainly depends more on the experiences of experts, which makes the heuristics lack of the abilities for continuous improvements. To address this problem, machine learning maybe a proper way. Considering the position relations and the context of text segments pairs, we formalize the text alignment task as a problem of sequence labeling, improving the current methods at the model level. Especially, this paper proposes to use the probabilistic graphical model to tag the observed sequence of pairs of text segments. Hence we present the sequence labeling approach for text alignment in plagiarism detection based on Conditional Random Fields. The proposed approach is evaluated on the PAN@CLEF 2012 artificial high obfuscation plagiarism corpus and the simulated paraphrase plagiarism corpus, and compared with the methods achieved the best performance in PAN@CLEF 2012, 2013 and 2014. Experimental results demonstrate that the proposed approach significantly outperforms the state of the art methods.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.535-539
/
2020
다양한 발화를 모델링하는 요구는 자연어 처리 분야에서 꾸준히 있었으며 단어, 구 또는 문장과 동등한 의미 콘텐츠를 자동으로 식별하고 생성하는 것은 자연어 처리의 중요한 부분이다. 본 논문에서는 포인터 생성 네트워크(Pointer Generate Nework)를 이용하여 패러프레이즈 생성 모델을 제안한다. 제안한 모델의 성능을 측정하기 위해 사람이 직접 구축한 유사 문장 코퍼스를 이용하였으며, 토큰 단위의 BLEU-4 0.250, ROUGE_L 0.455, CIDEr 2.190의 성능을 보였다. 하지만 입력 문장과 동일한 문장을 출력하는 문제점이 존재하여 빔서치(beam search)를 적용하여 입력 문장과 비교하여 생성 문장을 선택하는 방식을 적용하였다. 입력 문장과 동일한 문장을 제외한 문장으로 평가를 진행했으며, 토큰 단위의 BLEU-4 0.234, ROUGE_L 0.459, CIDEr 2.041의 성능을 보였으나, 패러프레이즈 생성 데이터 양이 크게 증가하였다. 본 연구는 문장 간의 의미적으로 동일한 정보를 정확하게 추출할 수 있게 됨으로써 정보 추출, 온톨로지 생성에 도움이 될 것이다. 또한 이러한 기법이 챗봇에서 사용자의 의도 탐지 및 MRC와 같은 자연어 처리의 여러 분야에 유용한 자원으로 사용될 것이다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.357-362
/
2020
자연어 처리 응용 시스템이 패러프레이즈 표현을 얼마나 정확하게 포착하는가에 따라 응용 시스템의 성능 측면에서 차이가 난다. 따라서 자연어 처리의 응용 분야 전반에서 패러프레이즈 표현에 대한 중요성이 커지고 있다. 시스템의 성능 향상을 위해서는 모델을 학습시킬 충분한 말뭉치가 필요하다. 특히 이러한 패러프레이즈 말뭉치를 구축하기 위해서는 정확한 패러프레이즈 추출이 필수적이다. 따라서 본 연구에서는 패러프레이즈를 추출을 위한 언어 자원으로 키프레이즈 데이터셋을 제안하고 이를 기반으로 유사한 의미를 전달하는 패러프레이즈 관계의 문장을 추출하였다. 구축한 키프레이즈 데이터셋을 패러프레이즈 추출에 활용한다면 본 연구에서 수행한 것과 같은 간단한 방법으로 패러프레이즈 관계에 있는 문장을 찾을 수 있다는 것을 보였다.
Despite the rise of studies in spoken to sign language translation, low-resource problems of sign language corpus have been rarely addressed. As a first step towards translating from spoken to sign language, we addressed the problems arising from resource scarcity when translating spoken language to manual signals translation using statistical machine translation techniques. More specifically, we proposed three preprocessing methods: 1) paraphrase generation, which increases the size of the corpora, 2) lemmatization, which increases the frequency of each word in the corpora and the translatability of new input words in spoken language, and 3) elimination of function words that are not glossed into manual signals, which match the corresponding constituents of the bilingual sentence pairs. In our experiments, we used different types of English-American sign language parallel corpora. The experimental results showed that the system with each method and the combination of the methods improved the quality of manual signals translation, regardless of the type of the corpora.
Today, opinion reviews on the Web are often used as a means of information exchange. As the importance of opinion reviews continues to grow, the number of issues for opinion spam also increases. Even though many research studies on detecting spam reviews have been conducted, some limitations of gold-standard datasets hinder research. Therefore, we introduce a new dataset called "Paraphrased Opinion Spam (POS)" that contains a new type of review spam that imitates truthful reviews. We have noticed that spammers refer to existing truthful reviews to fabricate spam reviews. To create such a seemingly truthful review spam dataset, we asked task participants to paraphrase truthful reviews to create a new deceptive review. The experiment results show that classifying our POS dataset is more difficult than classifying the existing spam datasets since the reviews in our dataset more linguistically look like truthful reviews. Also, training volume has been found to be an important factor for classification model performance.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.12-17
/
2019
FAQ(Frequently Asked Questions) 질의 응답 시스템은 자주 묻는 질문과 답변을 정의하고, 사용자 질의에 대해 정의된 답변 중 가장 알맞는 답변을 추론하여 제공하는 시스템이다. 정의된 대표 질문 및 대응하는 답변을 클래스(Class)라고 했을 때, FAQ 질의 응답 시스템은 분류(Classification) 문제라고 할 수 있다. 종래의 FAQ 분류는 동일 클래스 내 동의 문장(Paraphrase)에서 나타나는 공통적인 특징을 통해 분류 문제를 학습하였으나, 이는 비슷한 단어 구성을 가지면서 한 두 개의 단어에 의해 의미가 다른 문장의 차이를 구분하지 못하며, 특히 서로 다른 클래스에 속한 학습 데이터 간에 비슷한 의미를 가지는 문장이 존재할 때 클래스 분류에 오류가 발생하기 쉬운 문제점을 가지고 있다. 본 논문에서는 이 문제점을 해결하고자 서로 다른 클래스 내의 학습 데이터 문장들이 상이한 클래스임을 구분할 수 있도록 클래스 일치 여부(Class coincidence classification) 문제를 결합 학습(Jointly learning)하는 기법을 제안한다. 동일 클래스 내 학습 문장의 무작위 쌍(Pair)을 생성 및 학습하여 해당 쌍이 같은 클래스에 속한다는 것을 학습하게 하면서, 동시에 서로 다른 클래스 간 학습 문장의 무작위 쌍을 생성 및 학습하여 해당 쌍은 상이한 클래스임을 구분해 내는 능력을 함께 학습하도록 유도하였다. 실험을 위해서는 최근 발표되어 자연어 처리 분야에서 가장 좋은 성능을 보이고 있는 BERT 의 텍스트 분류 모델을 이용했으며, 제안한 기법을 적용한 모델과의 성능 비교를 위해 한국어 FAQ 데이터를 기반으로 실험을 진행했다. 실험 결과, 분류 문제만 단독으로 학습한 BERT 기본 모델보다 본 연구에서 제안한 클래스 일치 여부 결합 학습 모델이 유사한 문장들 간의 차이를 구분하며 유의미한 성능 향상을 보인다는 것을 확인할 수 있었다.
International Journal of Knowledge Content Development & Technology
/
v.14
no.3
/
pp.39-57
/
2024
Plagiarism detection software is beneficial in detecting plagiarism in research works of postgraduate students. Despite the benefits of using plagiarism detection software, studies have revealed that most students, including postgraduates, do not use plagiarism detection software as expected. This could depend on the provision of facilitating conditions like internet connectivity, training opportunities and electricity. Thus, this study examined facilitating conditions and the use of plagiarism detection software among postgraduates of the University of Ibadan, Nigeria. A descriptive survey research design of the correlational type was used for this study, with a population of 2143 postgraduates. The multi-stage random sampling technique was used to determine the sample size of 242. The questionnaire was the research instrument, and data was analysed using descriptive statistics. Results showed that most postgraduates agreed that the university provided facilitating conditions like internet connectivity. The majority of the respondents noted that they used Turnitin monthly. Most of the respondents noted that they used plagiarism detection software to paraphrase their work and check the correctness of the grammar in their documents. The most prominent challenges confronting plagiarism detection software use by most respondents were their inability to afford subscription payment to use the plagiarism detection software and slow internet connectivity. There was a significant positive relationship between facilitating conditions and the use of plagiarism detection software by the postgraduates of the University of Ibadan, Nigeria. Some of the recommendations for the institution's management include leveraging the vast network of alumni willing to give back to the institution and intervening in the provision of internet connectivity and electricity.
Objective : Many communication recovery strategies should be used when communication breakdowns occur for successful communication, however, communication problems increase due to inadequate use of such strategies in older people with dementia. The purpose of this study was to investigate the difference of recovery strategy between dementia and the elderly in conversational discourse. Method : The subjects were eight of Alzheimer's dementia and 10 general elderly. Conversation discourse tasks were conducted face-to-face with the subjects. Communication breakdown and communication recovery strategies were analyzed based on 200 utterances collected in the conversation discourse. Result : First, the AD group had more communication breakdown than the control group, but the recovery rate did not differ between the groups. Second, in the AD group, the nonspecific recovery strategy and the clarification demand strategy were used as the expression strategy. The recovery rate after using expressive strategy was more than 90% in explanation strategy, combined strategy, nonspecific repair strategy, and repetition confirmation strategy. The response strategy used a lot of paraphrase strategy and combined strategies, and the recovery rate after using the response strategy was 100% for the simplification strategy, repeat strategy and gesture strategy. Conclusion : The AD group showed more breakdown of research subjects and breakdown of researchers than control group, and it showed ability to use various expression strategy and response strategy though there was difference in repair rate between communication repair strategy. AD group used nonspecific repair strategy in expression strategy the most and paraphrase strategy in response strategy the most. This shows different characteristic from ordinary elderly people. Therefore, it is necessary to utilize this repair strategy for rehabilitation of AD elderly.
Even though only 3 sijo are in high school textbook. through these 3 sijo each type can be understood in that each represents pyung sijo, sasul sijo, and present sijo. To learn with learner-centered activities, which aim for full knowledge acquisition regarding literary works, as the preparing stage, students can learn what theyll learn by teachers. Sijo are, so to speak, formed with three chapters, and stand for the world that is colorless, scentless, and flavorless. So, the theme can be found with ease. Compared with other genres, sijo can be formed creating background with ease. Moreover, sijo are not too long, so learners can paraphrase it. Sijo that express private experiences with the everyday language can be related to other genres or everyday language. So, sijo are last to present. In the teaching phase, on the gradation of concretion and gradation, writing or presentation activities are presented. After classroom, learners keep a reaction journal. In the phase of concretion and gradation, learners can apprehend that typical differences of the emotions of poetic speakers is from typical differences, even though emotions of poetic speakers of (1)$\cdot$(2)$\cdot$(3) that is each stand for pyung sijo, sasul sijo, and present sijo are roughly summarized loneliness, desolateness, and gloominess. Moreover, these typical differences are from social, political. and cultural settings, namely, the differences of contexts. In this teaching model. learners should prepare for content regarding context and text before the class. Teachers should act as an assistant to help learners pre-understand their subjective experiences and imaginations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.