• Title/Summary/Keyword: Parametric-based system

Search Result 625, Processing Time 0.032 seconds

A Parametric Study on Ice Scouring Mechanism for Determination of Pipeline Burial Depths

  • Park, Kyung-Sik;Lee, Jong-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.29-40
    • /
    • 2004
  • Interaction of grounded ice ridges with underlying seabed is one of the major considerations in the design of Arctic pipeline system. Previously several ice scour models were developed by researchers to describe the ice scour-seabed interaction mechanism. In this paper, a parametric study on ice scouring mechanism is performed and the limitation of ice scour-seabed interaction models is discussed. Simple laboratory tests are carried out and then the shape pattern of deposited soil around the ice is redefined. New ice scour model assumes trapezoidal cross section based on the field observation data. Ice scour depth and soil resistance forces on seabed are calculated with varying the keel angle of a model ice ridge.

Slider-Bearing Design with Micro-Machined Wavy-Cavity: Parametric Characterization of Thermohydrodynamic-Operation-Scheme

  • Ozalp B. Turker;Ozalp A. Alper
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1590-1606
    • /
    • 2006
  • Slider bearings are widely applied in mechanical systems, where the design needs cover increased load capacity, lowered friction and power consumption and creative designs. This work is governed to perform a parametric characterization, by generating a novel structure on the upper slider surface, which can formally be expressed in micro-machined wavy-form, where the individual and combined influences of various structural design parameters and boundary conditions, on the performance records, are also evaluated. Computations put forward that the contribution of the wave amplitude on power loss values is highly dependent on the level of inlet pressure; higher amplitudes are determined to increase power loss in the lowest inlet pressure case of 1.01, whereas the contrary outcome is determined in the higher inlet pressure cases of 3.01 & 5.01. Designing the slider bearing system, based on optimal load capacity, produced the optimum wave number ranges as 10-45, 7-11 and 5-8 for the pad inclinations of $5^{\circ},\;4^{\circ}$ and $3^{\circ}$ respectively.

Development of Automatic Gear Modeling Module Using Computer Aided Design(CAD) (컴퓨터응용설계(CAD)를 이용한 기어모델링 자동화 모듈 개발)

  • Kim, Dae-Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.803-808
    • /
    • 2018
  • Combining digital automation solutions throughout recent manufacturing process is essential. Advanced robot and mechanical techniques are required for design, manufacture, and distribution process. Manual design of repetitive similar mechanical components during the development phase of these advanced machines and robots can occur wasting time and money. Developed gear design module, which is the power transfer system mechanical component, was programmed in the Visual Basic language in CATIA V5 environment. Automation Process is Based on Parametric Modeling Method. and it was found to be effective in reducing design time compared to designers manual modeling.

Longitudinal reaction on conductors due to tornado wind load

  • Dingyu Yao;Ashraf El Damatty
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.325-339
    • /
    • 2024
  • The longitudinal force resulting from tornado loads on transmission line is considered a crucial factor contributing to the failure of transmission line structures during tornado events. Accurate estimation of this longitudinal force poses a challenge for structural designers. Therefore, the objective of this paper is to provide a set of charts that can be easily used to estimate the peak longitudinal forces transferred from the conductors to a tower. The critical wind field and corresponding configuration considered in this paper are previously studied and determined. The charts should account for all the conductor parameters that can affect the value of the longitudinal force. In order to achieve that, a parametric study is first conducted to assess the variation of the longitudinal forces with different conductor parameters, based on the critical tornado configuration. Results of this parametric study are used to develop the charts that can be used to calculate longitudinal forces by adopting a multi-variable line regression. The forces calculated from charts are validated by finite element analysis. An example for the usage of the charts is provided at the end of this paper.

Performance Improvement Using an Automation System for Segmentation of Multiple Parametric Features Based on Human Footprint

  • Kumar, V.D. Ambeth;Malathi, S.;Kumar, V.D. Ashok;Kannan, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1815-1821
    • /
    • 2015
  • Rapid increase in population growth has made the mankind to delve in appropriate identification of individuals through biometrics. Foot Print Recognition System is a new challenging area involved in the Personal recognition that is easy to capture and distinctive. Foot Print has its own dimensions, different in many ways and can be distinguished from one another. The main objective is to provide a novel efficient automated system Segmentation using Foot Print based on structural relations among the features in order to overcome the existing manual method. This system comprises of various statistical computations of various foot print parameters for identifying the factors like Instep-Foot Index, Ball-Foot Index, Heel- Index, Toe- Index etc. The input is naked footprint and the output result to an efficient segmentation system thereby leading to time complexity.

Generative Design System based on Environment Analysis (환경분석에 기반한 생성디자인 시스템 설계에 관한 연구)

  • Ji, Seung-Yeul;Jun, Han-Jong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.6
    • /
    • pp.403-410
    • /
    • 2010
  • This paper is aimed at the development of a theoretical framework that addresses practical applications of generative design system that have been observed in architectural practice. Existing theoretical frameworks are not aimed at addressing this specific use of parametric tools but do provide a set of key themes. Based on these themes a generative design system is presented here as a means for tackling architectural design development tasks. This is then used in order to examine a case study; the generative design system tasks involved in the design development and documentation of the Olympic Stadium in Germany. The findings from this examination are used to discuss proposals and implications for a practical framework for generative design in architecture.

Reliability-Based Capacity Rating of High-Speed Rail-Road Bridges (신뢰성에 기초한 고속철도 교량의 내하력평가)

  • 조효남;이승재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.73-81
    • /
    • 1995
  • In Korea, the pilot construction of the first high-speed railroad on the Seoul-Pusan has already started 2 years ago. In the thesis, an attempt is made to develop reliability-based integrity-assessment models for the computer-aided control and maintenance of high-speed railroad bridges. The strength limit state models for PC railroad bridges encompass the bending and shear strengths as well as the strength interaction equations which simultaneously take into the element and system reliablities of the proposed limit states and reliability models. Then, the actual load carrying capacity and the realistic safety of bridges are evaluated using the system reliability-based equivalent strength, and the results are compared with those of the element reliability-based or conventional methods. Various parametric studies are performed for the proposed reliability-based safety and integrity-assessment models using the actual PC box girder bridges used in the pilot construction. And the sensitivity analyses are performed for the basic random variables included in strength limit state models. It is concluded that proposed models may be practically applied for the rational assessment of safety and integrity of high speed railroad bridges.

  • PDF

Parametric Study of 2.5 kW Class Propeller Type Micro Hydraulic Turbine (2.5 kW 급 프로펠러형 마이크로 수차 매개변수 연구)

  • MA, SANG-BUM;KIM, SUNG;CHOI, YOUNG-SEOK;CHA, DONG-AN;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.387-394
    • /
    • 2020
  • A parametric study of a 2.5 kW class propeller type micro hydraulic turbine was performed. In order to analyze the internal flow characteristics in the hydraulic turbine, three dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used and the hexahedral grid system was used to construct computational domain. To secure the reliability of the numerical analysis, the grid dependency test was performed using the grid convergence index method based on the Richardson extrapolation, and the grid dependency was removed when about 1.7 million nodes were used. For the parametric study, the axial distance at shroud span (L) between the inlet guide vane and the runner, and the inlet and outlet blade angles (β1, β2) of the runner were selected as the geometric parameters. The inlet and outlet angles of the runner were defined in the 3 spans from the hub to tip, and a total of 7 geometric parameters were investigated. It was confirmed that the outlet angles of the runner had the most sensitive effect on the power and efficiency of the micro hydraulic turbine.

A Study on Transfer Function Identification of Plate Activity Vibration System using MATLAB (MATLAB을 이용한 평판능동진동시스템의 전달함수 식별에 관한 연구)

  • Lee, Jea-Ho;Kim, Joon-Kook;Kim, Yi-Cheal;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.678-680
    • /
    • 2004
  • In many cases the systems are so complex that it is not possible to obtain reasonable models using physical laws. Also a model based on physical laws contains a number of unknown parameters even if the structure is derived from physical laws. These problems can be solved by system identification. In this paper, plate activity vibration is selected as an example for system identification. The transfer functions of this system is derived by using ARMAX based on input/output data through experiment.

  • PDF

Impedance Control of Backdrivable Hydraulic Actuation Systems with Explicit Disturbance Estimation (직접 외란 추정을 통한 역구동성 유압 구동 시스템의 임피던스 제어)

  • Yoo, Sunkyum;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.348-356
    • /
    • 2019
  • The backdrivable servovalve is a desirable component for force and interaction control of hydraulic actuation systems because it provides direct force generation mechanical impedance reduction by its own inherent backdrivability. However, high parametric uncertainty and friction effects inside the hydraulic actuation system significantly degrade its advantage. To solve this problem, this letter presents a disturbance-adaptive robust internal-loop compensator (DA-RIC) to generate ideal interactive control performance from the backdrivable-servovalve-based system. The proposed control combines a robust internal-loop compensator structure (RIC) with an explicit disturbance estimator designed for asymptotic disturbance tracking, such that the controlled system provide stable and ideal dynamic behavior for impedance control, while completely compensating the disturbance effects. With the aid of a backdrivable servovalve, we show that the proposed control structure can be implemented based on a simplified nominal model, and the controller enables implementation without accurate knowledge of the target system parameters and disturbances. The performance and properties of the proposed controller are verified by simulation and experiments.