• Title/Summary/Keyword: Parametric surface

Search Result 512, Processing Time 0.026 seconds

Development of Design Software for MEMS integrating Commercial Codes: DS/MEMS (상용코드 통합을 통한 미소기전집적시스템의 설계 소프트웨어 개발:DS/MEMS)

  • 허재성;이상훈;곽병만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.180-187
    • /
    • 2003
  • A CAD-based seamless design system for MEMS named DS/MEMS was developed which performs coupled-field analysis, optimal and robust design. DS/MEMS has been developed by means of integrating commercial codes and inhouse code-SolidWorks, FEMAP, ANSYS and CA/MEMS. This strategy results in versatility that means to include various analysis model, corresponding analyses and approximated design sensitivity analysis and user friendliness that design variables are taken to be selectable directly from a CAD model, that the problem is formulated under a window environment and that the manual job during optimization process is almost eliminated. DS/MEMS works on a parametric CAD platform, integrating CAD modeling, analysis, and optimization. Nonlinear programming algorithms, the Taguchi method, and response surface method are made available for optimization. One application problem is taken to illustrate the proposed methodology and show the feasibility of DS/MEMS as a practical tool.

Analysis of Material Property Requirements on Automotive Stamping Parts (성형 해석에 의한 자동차 부품별 소재 요구 특성 분석)

  • Han S. S.;Kang Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.385-388
    • /
    • 2004
  • The influence of material properties and process parameters on the strain distribution of stamping parts was studied by finite element method. For the parametric study, the investigation of variation of material properties was carried out with tensile test for a dozens of different steel sheets. The friction test for each surface and lubricants conditions are also carried out because the frictional characteristic is important parameter fur sheet metal forming. The geometry of stamping parts was measured by 3D scanner to build the tool model fer the FE analysis. As a result of analysis the major process parameter fer each automotive parts was investigated.

  • PDF

Adaptive B-spline volume representation of measured BRDF data for photorealistic rendering

  • Park, Hyungjun;Lee, Joo-Haeng
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Measured bidirectional reflectance distribution function (BRDF) data have been used to represent complex interaction between lights and surface materials for photorealistic rendering. However, their massive size makes it hard to adopt them in practical rendering applications. In this paper, we propose an adaptive method for B-spline volume representation of measured BRDF data. It basically performs approximate B-spline volume lofting, which decomposes the problem into three sub-problems of multiple B-spline curve fitting along u-, v-, and w-parametric directions. Especially, it makes the efficient use of knots in the multiple B-spline curve fitting and thereby accomplishes adaptive knot placement along each parametric direction of a resulting B-spline volume. The proposed method is quite useful to realize efficient data reduction while smoothing out the noises and keeping the overall features of BRDF data well. By applying the B-spline volume models of real materials for rendering, we show that the B-spline volume models are effective in preserving the features of material appearance and are suitable for representing BRDF data.

Nose Shape Optimization of the High-speed Train to Reduce the Micro-pressure Wave (미기압파 저감을 위한 고속전철 전두부형상의 최적화설계)

  • 권혁빈;이관중;이동호
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.506-513
    • /
    • 2000
  • The tunnel booming noise generated by a train moving into a tunnel has been one of the most serious constraints in the development of the high-speed trains. It is well known that the nose shape of the train has the significant influence on the intensity of the booming noise. In this study, the nose shape has been optimized by using the response surface methodology and the axi-symmetric compressible Euler equations. The parametric studies are also performed with respect to the slenderness ratio, the blockage ratio and the train speed to investigate their sensitivities to the optimization results. The results show that it is possible to define more general design space by introducing the Hicks-Henne shape functions, resulting in the more effective nose shape than that of Maeda. The mechanism and the aspects of the train-tunnel interaction were also investigated from the results of the parametric study.

  • PDF

Precision shape modeling by z-map model

  • Park, Jung-Whan;Chung, Yun-Chan;Choi, Byoung-Kyn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2002
  • The Z-map is a special farm of discrete non-parametric representation in which the height values at grid points on the xy-plane are stored as a 2D array z[ij]. While the z-map is the simplest farm of representing sculptured surfaces and is the most versatile scheme for modeling non-parametric objects, its practical application in industry (eg, tool-path generation) has aroused much controversy over its weaknesses, namely its inaccuracy, singularity (eg, vertical wall), and some excessive storage needs. Much research or the application of the z-map can be found in various articles, however, research on the systematic analysis of sculptured surface shape representation via the z-map model is rather rare. Presented in this paper are the following: shape modeling power of the simple z-map model, exact (within tolerance) z-map representation of sculptured surfaces which have some feature-shapes such as vertical-walls and real sharp-edges by adopting some complementary z-map models, and some application examples.

A Parametric Study on Design Variables of Lifting Chamber Using Numerical Simulation (수치해석을 이용한 부양실 설계변수에 관한 연구)

  • Jeon, Chang-Soo
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.52-64
    • /
    • 1998
  • Numerical simulations on the flowfield of lifting chamber for Wing-In-Ground vehicle were performed using Fluent/UNS 4.2 software. The trend of lifting force in lifting chamber and parametric study of geometric and fluid variables were primarily investigated. Selected parameters for investigation are inlet velocity, height between chamber and water level, depth of the skirt, location of inlet, variaton of height at bow and stern. Also, air capturing capabilities from downstream of the propeller were evaluated at the air inlet. The lifting force was increased linearly with the increased of inlet velocity and nonlinearly with the decrease of height force was increased with increased depth. It turned out to have very minor effect on lifting force to change the location of air inlet for lifting chamber, installed on top surface. Tilting the vehicle when it was lifted, the lifting forces, generated in each case, showed no appreciable changes.

  • PDF

Properties of Hydrologic Cycle in Catchments in Different Land Use and Runoff Analysis by a Lumped Parametric Model

  • Takase, Keiji
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.48-56
    • /
    • 2000
  • In this paper, properties of hydrologic cycle in three experimental catchments were compared and different types of a lumped parametric model were applied to understand the hydrologic cycle in the catchments. One of them is a forest catchment and another one includes the reclained upland fields and last one does terraces paddy fields. The comparison of hydrologic properties showed that the differences in land used have great influences on the soil properties of surface layer, which cause changes in hydrologic processes such as evapotranspiration and storm runoff et.al. By the runoff analysis models, good agreements between observed and calculated discharge from the catchments were obtained and it was found that the differences in values of optimized model parameters and water budget components reflect those in the hydrologic cycle among them.

  • PDF

Contact treatment algorithm of z-map model with vertical walls and its application to the deep drawing of a clover shaped cup (Z-map으로 표현된 수직 벽면을 가진 금형에서의 접촉처리법과 클로버형 컵 디프드로잉 공정의 해석에의 응용)

  • 서의권;박정환;심현보
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.38-45
    • /
    • 1998
  • The Z-map model which is quite similar to the non-parametric patch is widely used to describe the shape of a surface because of its simplicity. Despite the inherent advantage of z-map model. it has drawbacks that there exists difficulty in expressing the vertical walls and its related contact treatment method. In the region of vertical walls, there is a convergence problem in searching the contact point. In this study a contact point finding scheme is presented, based on the z value of the z-map model on the sheet normal direction. To show the utility of this scheme a compared with the experimental results. The effects of the Z-map grid distances and the interpolations of the inside Z-map value are also discussed.

  • PDF

Parametric Study on the $LiBr-H_{2}O$ Absorption Process on Horizontal Tubes Using Wavier-Stokes Equations (Navier-Stokes 방정식을 사용한 수평원관상의 $LiBr-H_{2}O$ 흡수특성에 대한 연구)

  • Min J. K.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.213-218
    • /
    • 1999
  • The $LiBr-H_{2}O$ absorption process on a horizontal tube has been analyzed using the numerical method which incorporates the fully elliptic Navier-Stokes equations for the momentum equations, the energy and mass-diffusion equations. On a staggered grid, the SIMPLER algorithm with the QUICK scheme is used to solve these equations along with the MAC method for the free surface tracking. With the assumption that the absorbent is linear, calculations have been made for various inlet temperature and flow-rate conditions. The detailed results of the parametric study, such as the temperature, concentration, absorption mass flux and wall heat flux distributions are presented. The self-sustained feature of the absorption process is clearly elaborated. The analyses have also been carried out for multiple tube arrangement and the results show that the absorption rate converges after a few tube rows.

  • PDF

Application of fin system to reduce pitch motion

  • Reguram, B. Rajesh;Surendran, S.;Lee, Seung Keon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.409-421
    • /
    • 2016
  • Container ships are prone to move at a greater speed compared to other merchant ships. The slenderness of the hull of container vessel is for better speed, but it leads to unfavorable motions. The pitch and roll are related and sometimes the vessel might be forced to parametric roll condition which is very dangerous. A fin attached to the ship hull proves to be more efficient in controlling the pitch. The fin is fitted at a lowest possible location of the hull surface and it is at the bow part of the ship. Simulations are done using proven software package ANSYS AQWA and the results are compared. Simulations are done for both regular and irregular seas and the effect of fin on ship motion is studied. P-M spectrum is considered for various sea states.