• 제목/요약/키워드: Parametric modification function

검색결과 10건 처리시간 0.025초

파라메트릭 변환함수를 이용한 선형최적화의 실용화에 관한 연구 (A Practical Hull Form Optimization Method Using the Parametric Modification Function)

  • 김희정;최희종;전호환
    • 대한조선학회논문집
    • /
    • 제44권5호
    • /
    • pp.542-550
    • /
    • 2007
  • A geometry modification is one of main keys in achieving a successful optimization. The optimized hull form generated from the geometry modification should be a realistic, faired form from the ship manufacturing point of view. This paper presents a practical hull optimization procedure using a parametric modification function. In the parametric modification function method, the initial ship geometry was easily deformed according to the variations of design parameters. For example, bulbous bow can be modified with several parameters such as bulb area, bulb length, bulb height etc. Design parameters are considered as design variables to modify hull form, which can reduce the number of design variables in optimization process and hence reduce its time cost. To verify the use of the parametric modification function, optimization for KCS was performed at its design speed (FN=0.26) and the wave making resistance is calculated using a well proven potential code with fully nonlinear free surface conditions. The design variables used are key design parameters such as Cp curve, section shape and bulb shape. This study shows that the hull form optimized by the parametric modification function brings 7.6% reduction in wave making resistance. In addition, for verification and comparison purpose, a direct geometry variation method using a bell-shape modification function is used. It is shown that the optimal hull form generated by the bell-shaped modification function is very similar to that produced by the parametric modification function. However, the total running time of the parametric optimization is six times shorter than that of the bell shape modification method, showing the effectiveness and practicalness from a designer point of view in ship yards.

다중 파라메트릭 변환곡선 기반 선수 선형 변환기법 연구 (Study on Hull Form Variation of Fore Body Based on Multiple Parametric Modification Curves)

  • 박성우;김승현;이인원
    • 대한조선학회논문집
    • /
    • 제59권2호
    • /
    • pp.96-108
    • /
    • 2022
  • In this paper, we propose a systematic hull form variation technique which automatically satisfies the displacement constraint and guarantees a high level of fairness. This method is possible through multiple parameter correction curves. The present method is to improve the hull form variation method based on parametric modification function and consists of two sub-categories: SAC variation and section lines modification. For SAC variation, the utilization of two B-Spline curves satisfying GC1 condition led to the satisfaction of displacement constraint and high level of fairness at the same time. Section lines modification methods involves in using two fuctions: the first is the waterplane modification function combining two cubic splines. the other function is the sectional area modification function consisting of 2nd order polynomial over the DLWL(Design Load Waterline) and 3rd order polynomial below the DLWL, This function enables not only the fundamental U-V section shape variation but also systematically modified section lines. The present method is expected to be more useful in the hull form optimization process using CFD compared to the existing method.

CFD 를 이용한 선미선형 최적화 기법 개발 (Development of CFD Based Stern Form Optimization Method)

  • 김희정;전호환;최희종
    • 대한조선학회논문집
    • /
    • 제44권6호
    • /
    • pp.564-571
    • /
    • 2007
  • In the present study, stern form optimization has been carried out using computational fluid dynamics (CFD) techniques. The viscous pressure drag has been minimized to optimize stern shape. Parametric modification function has been used to modify the shape of the hull. By the use of the parametric modification function and algebraic scheme to grid manipulation, the initial ship geometry was easily deformed according to change of design parameters. For purpose of illustration, KRISO 319K VLCC (KVLCC) is chosen for example ship to demonstrate stern form optimization. The numerical results indicate that the optimized hull yields a reduction in viscous resistance.

특이기저함수를 사용한 개선된 Mesh-Free 균열해석기법에 대한 파라메타 연구 (Parametric Study on an Improved Mesh-Free Crack Analysis Technique Using Singular Basis Function)

  • 이상호;윤영철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.19-26
    • /
    • 2001
  • Previously, an improved crack analysis technique based on Element-Free Galerkin Method (EFGM) which includes a discontinuity function and a singular basis function was presented. The technique needs neither addition of nodes nor modification of the model, but it shows some dependency on the formulation and modeling parameters such as the class of weight function, the size of compact support, dilation parameter and the range controlled by the singular basis function. For those parameters, a parametric study was performed on the calculation of a discrete error and then, a guideline for the choice of adequate parameters in the technique was proposed.

  • PDF

Hull-form optimization of KSUEZMAX to enhance resistance performance

  • Park, Jong-Heon;Choi, Jung-Eun;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.100-114
    • /
    • 2015
  • This paper deploys optimization techniques to obtain the optimum hull form of KSUEZMAX at the conditions of full-load draft and design speed. The processes have been carried out using a RaPID-HOP program. The bow and the stern hull-forms are optimized separately without altering neither, and the resulting versions of the two are then combined. Objective functions are the minimum values of wave-making and viscous pressure resistance coefficients for the bow and stern. Parametric modification functions for the bow hull-form variation are SAC shape, section shape (U-V type, DLWL type), bulb shape (bulb height and size); and those for the stern are SAC and section shape (U-V type, DLWL type). WAVIS version 1.3 code is used for the potential and the viscous-flow solver. Prior to the optimization, a parametric study has been conducted to observe the effects of design parameters on the objective functions. SQP has been applied for the optimization algorithm. The model tests have been conducted at a towing tank to evaluate the resistance performance of the optimized hull-form. It has been noted that the optimized hull-form brings 2.4% and 6.8% reduction in total and residual resistance coefficients compared to those of the original hull-form. The propulsive efficiency increases by 2.0% and the delivered power is reduced 3.7%, whereas the propeller rotating speed increases slightly by 0.41 rpm.

Bow hull-form optimization in waves of a 66,000 DWT bulk carrier

  • Yu, Jin-Won;Lee, Cheol-Min;Lee, Inwon;Choi, Jung-Eun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권5호
    • /
    • pp.499-508
    • /
    • 2017
  • This paper uses optimization techniques to obtain bow hull form of a 66,000 DWT bulk carrier in calm water and in waves. Parametric modification functions of SAC and section shape of DLWL are used for hull form variation. Multi-objective functions are applied to minimize the wave-making resistance in calm water and added resistance in regular head wave of ${\lambda}/L=0.5$. WAVIS version 1.3 is used to obtain wave-making resistance. The modified Fujii and Takahashi's formula is applied to obtain the added resistance in short wave. The PSO algorithm is employed for the optimization technique. The resistance and motion characteristics in calm water and regular and irregular head waves of the three hull forms are compared. It has been shown that the optimal brings 13.2% reduction in the wave-making resistance and 13.8% reduction in the added resistance at ${\lambda}/L=0.5$; and the mean added resistance reduces by 9.5% at sea state 5.

전역 최적화기법과 파라메트릭 변환함수를 이용한 선형 최적화 (Hull Form Optimization using Parametric Modification Functions and Global Optimization)

  • 김희정;전호환;안남현
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.590-600
    • /
    • 2008
  • This paper concerns the development of a designer friendly hull form parameterization and its coupling with advanced global optimization algorithms. As optimization algorithms, we choose the Partial Swarm Optimization(PSO) recently introduced to solve global optimization problems. Most general-purpose optimization softwares used in industrial applications use gradient-based algorithms, mainly due to their convergence properties and computational efficiency when a relatively few number of variables are considered. However, local optimizers have difficulties with local minima and non-connected feasible regions. Because of the increase of computer power and of the development of efficient Global Optimization (GO) methods, in recent years nongradient-based algorithms have attracted much attention. Furthermore, GO methods provide several advantages over local approaches. In the paper, the derivative-based SQP and the GO approach PSO are compared with their relative performances in solving some typical ship design optimization problem focusing on their effectiveness and efficiency.

체적 밸런스 선형변환방법에 대한 연구 (On the Volumetric Balanced Variation of Ship Forms)

  • 김현철
    • 한국해양공학회지
    • /
    • 제27권2호
    • /
    • pp.1-7
    • /
    • 2013
  • This paper aims at contributing to the field of ship design by introducing new systematic variation methods for ship hull forms. Hull form design is generally carried out in two stages. The first is the global variation considering the sectional area curve. Because the geometric properties of a sectional area curve have a decisive effect on the global hydrodynamic properties of ships, the design of a sectional area curve that satisfies various global design conditions, e.g., the displacement, longitudinal center of buoyancy, etc., is important in the initial hull form design stage. The second stage involves the local design of section forms. Section forms affect the local hydrodynamic properties, e.g., the local pressure in the fore- and aftbody. This paper deals with a new method for the systematic variation of sectional area curves. The longitudinal volume distribution of a ship depends on the sectional area curve, which can geometrically be controlled using parametric variation and a variation that uses the modification function. Based on these methods, we suggest a more generalized method in connection with the derivation of the lines for a new design compared to those for similar ships. This is the so-called the volumetric balanced variation (VOB) method for ship forms using a B-spline modification function and an optimization technique. In this paper the global geometric properties of hull forms are totally controlled by the form parameters. We describe the new method and some application examples in detail.

Bootstrap methods for long-memory processes: a review

  • Kim, Young Min;Kim, Yongku
    • Communications for Statistical Applications and Methods
    • /
    • 제24권1호
    • /
    • pp.1-13
    • /
    • 2017
  • This manuscript summarized advances in bootstrap methods for long-range dependent time series data. The stationary linear long-memory process is briefly described, which is a target process for bootstrap methodologies on time-domain and frequency-domain in this review. We illustrate time-domain bootstrap under long-range dependence, moving or non-overlapping block bootstraps, and the autoregressive-sieve bootstrap. In particular, block bootstrap methodologies need an adjustment factor for the distribution estimation of the sample mean in contrast to applications to weak dependent time processes. However, the autoregressive-sieve bootstrap does not need any other modification for application to long-memory. The frequency domain bootstrap for Whittle estimation is provided using parametric spectral density estimates because there is no current nonparametric spectral density estimation method using a kernel function for the linear long-range dependent time process.

B-스플라인 텐션 곡선을 이용한 음악 편곡 (Harmony Arrangements using B-Spline Tension Curves)

  • 유민준;이인권;권대현
    • 한국HCI학회논문지
    • /
    • 제1권1호
    • /
    • pp.1-8
    • /
    • 2006
  • 음악을 들을 때 사람이 인지할 수 있는 긴장감을 뜻하는 텐션(tension)은 조성음악의 기본을 이루는 중요한 요소이다. 본 논문에서는 임의의 곡의 텐션의 움직임을 B-스플라인 곡선을 이용하여 표현하고 이 곡선을 수정하여 음악의 긴장도를 조정할 수 있는 방법을 제안한다. 먼저, 우리는 음악에서 사용되는 다양한 코드들의 긴장도를 측정하는 방법 세 가지를 제안한다. 첫 번째는 러달이 제시한 5도권 기반의 코드 거리 측정방식을 개량한 것이며, 두 번째는 츄가 제시한 나선형 모델의 거리 측정 방식을 응용한 것이며, 세 번째는 크럼한슬이 제시한 특정한 조성에서 각 구성 음들의 안정도와 구성 음들 사이의 음정의 조화성을 이용한 방법이다. 이 방법들을 이용하여 우리는 음악이 지니고 있는 긴장도를 수치적으로 나타낼 수 있다. 다음으로 B-스플라인 곡선을 이용하여 전체 곡의 텐션의 움직임을 표현한다. B-스플라인 곡선으로 표현된 텐션 곡선은 수정이 가해져 원곡의 긴장도를 변화시키는데 사용될 수 있다. 본 논문에서는 곡 전체의 긴장도를 높이거나 낮추는 방법과 최적화를 이용하여 특정 부분의 긴장도를 변화시키는 방법을 제안한다. 그리고 원본 코드 진행에서 목표 코드 진행으로 점차적으로 변화하는 텐션의 움직임을 만드는 방법과, 임의의 두 곡이 부드러운 텐션의 움직임을 유지하면서 자연스럽게 연결될 수 있는 방법을 소개한다. 또한 B-스플라인 곡선을 통하여 새로운 코드 진행을 얻을 수 있는 방법을 소개한다. 본 논문에서는 B-스플라인 곡선이라는 수치적인 형태를 이용하여 음악의 긴장도라는 인지적인 요소를 조절할 수 있는 가능성을 보여주고 있다. 본 논문에 제안하는 여러 방법들은 모두 실시간에 계산이 가능하므로 게임 같은 인터렉티브한 환경에서 사용자의 감정과 시나리오에 따라 배경음악의 긴장도를 동적으로 변환시키는 것 같은 다양한 형태의 애플리케이션에 응용될 수 있다.

  • PDF