• Title/Summary/Keyword: Parametric approach

Search Result 720, Processing Time 0.022 seconds

Side Resistance of Rock Socketed Drilled Shafts in Consideration of the Shaft Size Effects (크기효과를 고려한 암반에 근입된 현장타설말뚝의 주면마찰력)

  • Sagong Myung;Paik Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.115-124
    • /
    • 2004
  • According to Sagong and Paik (2003), the side resistance of rock socketed drilled shafts is affected by rock quality, types, uniaxial compressive strength, and confining stress. Their approach based upon the Hoek-Brown criterion provides reasonable predictions of the side resistance. In this study, we propose an equation to calculate the side resistance considering size effects of the shafts and investigate the influence of drilled shaft diameter on the side resistance. A new method employs the modified Hoek-Brown criterion together with an empirical size effect of rock core. From the previous field tests, 12 pile load test results were collected and compared with prediction calculated from the equation proposed in this study. In a given condition, similar results between measurement and estimate are observed. From the parametric study on the GSI, confining stress, uniaxial compressive of intact rock and pile size, it is shown that uniaxial compressive strength is the most influential parameter on the side resistance. Though pile size shows the least influence on the resistance, the size effect is apparent as rock quality increases.

An Application of Artificial Intelligence System for Accuracy Improvement in Classification of Remotely Sensed Images (원격탐사 영상의 분류정확도 향상을 위한 인공지능형 시스템의 적용)

  • 양인태;한성만;박재국
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2002
  • This study applied each Neural Networks theory and Fuzzy Set theory to improve accuracy in remotely sensed images. Remotely sensed data have been used to map land cover. The accuracy is dependent on a range of factors related to the data set and methods used. Thus, the accuracy of maps derived from conventional supervised image classification techniques is a function of factors related to the training, allocation, and testing stages of the classification. Conventional image classification techniques assume that all the pixels within the image are pure. That is, that they represent an area of homogeneous cover of a single land-cover class. But, this assumption is often untenable with pixels of mixed land-cover composition abundant in an image. Mixed pixels are a major problem in land-cover mapping applications. For each pixel, the strengths of class membership derived in the classification may be related to its land-cover composition. Fuzzy classification techniques are the concept of a pixel having a degree of membership to all classes is fundamental to fuzzy-sets-based techniques. A major problem with the fuzzy-sets and probabilistic methods is that they are slow and computational demanding. For analyzing large data sets and rapid processing, alterative techniques are required. One particularly attractive approach is the use of artificial neural networks. These are non-parametric techniques which have been shown to generally be capable of classifying data as or more accurately than conventional classifiers. An artificial neural networks, once trained, may classify data extremely rapidly as the classification process may be reduced to the solution of a large number of extremely simple calculations which may be performed in parallel.

A Study on the Usage Pattern Based on Genres and Socio-demographic Characteristics in Online Games (사회통계학적, 장르적 분류에 따른 온라인 게임의 이용 특성에 관한 연구)

  • Ryu, Sung-Il;Park, Sun-Ju
    • Journal of Korea Game Society
    • /
    • v.10 no.3
    • /
    • pp.61-71
    • /
    • 2010
  • This study looks into the usage pattern in online games based on genres and socio-demographic characteristics. Compared to the prior studies that adopted survey as their main research method, this study has analyzed the actual data of game login records and adopted parametric modeling and mathematical approach. In terms of the socio-demographic characteristics, the following facts were confirmed: men > women by gender, students > white-collars > housewives > blue-collars > self-employed > jobless(etc.) by occupation, college graduates > K-12 students > high-school graduates > undergrads & grads by academic background, 3∼5 million > 1∼3 million > over 5 million > less than 1 million by income levels, and not married > married by marital status. In terms of genres, the population of the players is in the order of web board games, RPG, action/racing/shooting, and sports. The RPG game is confirmed to have a higher level of MCR (Max Concurrent User Ratio) than any other genres. On the other hand, the hypothesis on the difference in Repeated Use Ratio according to genres is rejected. This study has also confirmed that interactions exist between gender and age; genre and gender; genre and age among online game users, and conducted post-hoc analysis about those interactions.

Groundwater Flow Analysis around Hydraulic Excavation Damaged Zone (수리적 굴착손상영역에서의 지하수유동 특성에 관한 연구)

  • Park, Jong-Sung;Ryu, Dong-Woo;Ryu, Chang-Ha;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.109-118
    • /
    • 2007
  • The excavation damaged zone (EDZ) is an area around an excavation where in situ rock mass properties, stress condition. displacement. groundwater flow conditions have been altered due to the excavation. Various studies have been carried out on EDZ, but most studies have been focused on the mechanical bahavior of EDZ by in situ experiment. Even though the EDZ could potentially form a high permeable pathway of groundwater flow, only a few studies were performed on the analysis of groundwater flow in EDZ. In this study, the' hydraulic EDZ' was defined as the rock Lone adjacent to the excavation where the hydraulic aperture has been changed due to the excavation. And hydraulic EDZ (hydraulic aperture changed zone) estimated by two-dimensional DEM program was considered in three-dimensional DFN model. From this approach the groundwater flow characteristics corresponding to hydraulic aperture change were examined. Together. a parametric study was performed to examine the boundary conditions that frequently used in DFN analysis such as constant head or constant flux condition. According to the numerical analysis, hydraulic aperture change induced by the hydraulic-mechanical interaction becomes one of the most important factors Influencing the hydraulic behavior of jointed rock masses. And also from this study, we suggest the proper boundary condition in three-dimensional DFN model.

Effect of Rock Discontinuities on Dynamic Shear Stress Wave (암반 불연속면이 동적 전단응력파에 미치는 영향)

  • Son, Moorak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.25-32
    • /
    • 2018
  • This paper investigates the effect of rock discontinuities on a shear stress wave that is induced by earthquake or blasting and provides the result of numerical parametric studies. The numerical tests of different conditions of rock and discontinuity have been carried out after confirming that the numerical approach is valid throughout a verification analysis from which the test results were compared with a theoretical solution. In-situ stress condition was considered as a rock condition and internal friction angle and cohesive value, which are the shear strength parameters, were considered as discontinuities condition. The joint inclination angle was also taken into account as a parameter. With the various conditions of different parameters, the test results showed that a shear stress wave propagating through a mass is highly influenced by the shear strength of discontinuities and the condition of joint inclination angle as well as in-situ stress. The study results indicate that when earthquake or blasting-induced dynamic loading propagates through a jointed rock mass or a stratified soil ground the effect of in-situ stress and discontinuities including a stratum boundary should be taken into account when evaluating the dynamic effect on nearby facilities and structures.

Evaluating the Efficiency of Personal Information Protection Activities in a Private Company: Using Stochastic Frontier Analysis (개인정보처리자의 개인정보보호 활동 효율성 분석: 확률변경분석을 활용하여)

  • Jang, Chul-Ho;Cha, Yun-Ho;Yang, Hyo-Jin
    • Informatization Policy
    • /
    • v.28 no.4
    • /
    • pp.76-92
    • /
    • 2021
  • The value of personal information is increasing with the digital transformation of the 4th Industrial Revolution. The purpose of this study is to analyze the efficiency of personal information protection efforts of 2,000 private companies. It uses a stochastic frontier approach (SFA), a parametric estimation method that measures the absolute efficiency of protective activities. In particular, the personal information activity index is used as an output variable for efficiency analysis, with the personal information protection budget and number of personnel utilized as input variables. As a result of the analysis, efficiency is found to range from a minimum of 0.466 to a maximum of 0.949, and overall average efficiency is 0.818 (81.8%). The main causes of inefficiency include non-fulfillment of personal information management measures, lack of system for promoting personal information protection education, and non-fulfillment of obligations related to CCTV. Policy support is needed to implement safety measures and perform personal information encryption, especially customized support for small and medium-sized enterprises.

Percentile-Based Analysis of Non-Gaussian Diffusion Parameters for Improved Glioma Grading

  • Karaman, M. Muge;Zhou, Christopher Y.;Zhang, Jiaxuan;Zhong, Zheng;Wang, Kezhou;Zhu, Wenzhen
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.104-116
    • /
    • 2022
  • The purpose of this study is to systematically determine an optimal percentile cut-off in histogram analysis for calculating the mean parameters obtained from a non-Gaussian continuous-time random-walk (CTRW) diffusion model for differentiating individual glioma grades. This retrospective study included 90 patients with histopathologically proven gliomas (42 grade II, 19 grade III, and 29 grade IV). We performed diffusion-weighted imaging using 17 b-values (0-4000 s/mm2) at 3T, and analyzed the images with the CTRW model to produce an anomalous diffusion coefficient (Dm) along with temporal (𝛼) and spatial (𝛽) diffusion heterogeneity parameters. Given the tumor ROIs, we created a histogram of each parameter; computed the P-values (using a Student's t-test) for the statistical differences in the mean Dm, 𝛼, or 𝛽 for differentiating grade II vs. grade III gliomas and grade III vs. grade IV gliomas at different percentiles (1% to 100%); and selected the highest percentile with P < 0.05 as the optimal percentile. We used the mean parameter values calculated from the optimal percentile cut-offs to do a receiver operating characteristic (ROC) analysis based on individual parameters or their combinations. We compared the results with those obtained by averaging data over the entire region of interest (i.e., 100th percentile). We found the optimal percentiles for Dm, 𝛼, and 𝛽 to be 68%, 75%, and 100% for differentiating grade II vs. III and 58%, 19%, and 100% for differentiating grade III vs. IV gliomas, respectively. The optimal percentile cut-offs outperformed the entire-ROI-based analysis in sensitivity (0.761 vs. 0.690), specificity (0.578 vs. 0.526), accuracy (0.704 vs. 0.639), and AUC (0.671 vs. 0.599) for grade II vs. III differentiations and in sensitivity (0.789 vs. 0.578) and AUC (0.637 vs. 0.620) for grade III vs. IV differentiations, respectively. Percentile-based histogram analysis, coupled with the multi-parametric approach enabled by the CTRW diffusion model using high b-values, can improve glioma grading.

A Study on the Lateral Behavior of Pile-Bent Structures with $P-{\Delta}$ Effect ($P-{\Delta}$ 효과를 고려한 Pile-Bent 구조물의 수평거동 연구)

  • Jeong, Sang-Seom;Kwak, Dong-Ok;Ahn, Sang-Yong;Lee, Joon-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.77-88
    • /
    • 2006
  • In this study, the lateral behavior of Pile-Bent structures subjected to lateral loading was evaluated by a load-transfer approach. An analytical method based on the Beam-Column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic and yielding) and $P-{\Delta}$ effect. Special attention was given to the lateral deflection of Pile-Bent structures depending on different soil properties, lateral load, slenderness ratio based on pier length and reinforcing effect of casing. From the results of the parametric study, it is shown that the increase of lateral displacement in a pile is much less favorable for an inelastic analysis than for an elastic analysis. It is found that for inelastic analysis, the maximum bending moment is located within a depth approximately 3.5D(D: pile diameter) below ground surface, but within 1.5D when $P-{\Delta}$ effect is considered. It is also found that the magnitude and distribution of the lateral deflections and bending moments on a pile are highly influenced by the inelastic analysis and $P-{\Delta}$ effect, let alone soil properties around an embedded pile.

Reliability Estimation of Static Design Methods for Driven Steel Pipe Piles in Korea (국내 항타강관말뚝 설계법의 신뢰성평가)

  • Huh, Jung-Won;Park, Jae-Hyun;Kim, Kyung-Jun;Lee, Ju-Hyung;Kwak, Ki-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.61-73
    • /
    • 2007
  • As a part of Load and Resistance Factor Design(LRFD) code development in Korea, in this paper an intensive reliability analysis was performed to evaluate reliability levels of the two static bearing capacity methods for driven steel pipe piles adopted in Korean Standards for Structure Foundations by the representative reliability methods of First Order Reliability Method(FORM) and Monte Carlo Simulation(MCS). The resistance bias factors for the two static design methods were evaluated by comparing the representative measured bearing capacities with the design values. In determination of the representative bearing capacities of driven steel pipe piles, the 58 data sets of static load tests and soil property tests were collected and analyzed. The static bearing capacity formula and the Meyerhof method using N values were applied to the calculation of the expected design bearing capacity of the piles. The two representative reliability methods(FORM, MCS) based computer programs were developed to facilitate the reliability analysis in this study. Mean Value First Order Second Moment(MVFOSM) approach that provides a simple closed-form solution and two advanced methods of FORM and MCS were used to conduct the intensive reliability analysis using the resistance bias factor statistics obtained, and the results were then compared. In addition, a parametric study was conducted to identify the sensibility and the influence of the random variables on the reliability analysis under consideration.

Prototyping a BIM-enabled Design Tool for the Auto-arrangement of Interior Design Panels - Based on the Pattern Extraction of Bitmap Image Pixels and its Representation - (BIM기반 설계를 지원하는 인테리어 패널 자동배치 도구 프로토타입 구현 - 비트맵 이미지 픽셀 패턴의 추출과 패널 표현을 중심으로 -)

  • Huang, JinHua;Kim, HaYan;Lee, Jin-Kook
    • Design Convergence Study
    • /
    • v.15 no.5
    • /
    • pp.71-83
    • /
    • 2016
  • Interior panels are usually used in finishing of interior walls for not only decorative effects but also information transfer. According to designer's design placing interior panels may need repetitive tasks and the emphasis of this paper is to support an automation of these tasks. Considering the utilization characteristics of interior panels, we propose three method to present patterns by using bitmap image pixels and interior panels' shape changes, based on the theoretical consideration. In addition, in order to approve the possibility of the proposed methods, we have implemented the BIM based interior panels auto layout tool which applied one of the three methods to present patterns by using bitmap image pixel values and panel identification attributes. This tool also supports auto generation of quantity and panel arrangement sequence information that will be used in future construction phase. We expect that this approach will also be used in other decorative objects which require repetition of the basic units, such as floor tiles.