• Title/Summary/Keyword: Parametric algorithm

Search Result 459, Processing Time 0.029 seconds

Parametric Modelling of Coupled System (커플시스템의 파라메트릭 모델링)

  • Yoon, Moon-Chul;Kim, Jong-Do;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.43-50
    • /
    • 2006
  • In this successive study, the analytical realization of coupled system was introduced using the times series identification and spectrum analysis, which was compared with conventional FFT spectrum. Also, the numerical responses of second order system, which is coupled, were solved using the numerical calculation of Runge-Kutta Gill method. After numerical analysis, the displacement, velocity and acceleration were acquired. Among them, the response of displacement was used for the analysis of time series spectrum. Among several time series, the ARMAX algorithm was proved to be appropriate for the spectrum analysis of the coupled system. Using the separated response of 1st and 2nd mode, the mode was calculated separately. And the responses of mixed modes were also analyzed for calculation of the mixed modes in the coupled system.

  • PDF

Parametric Modelling of Uncoupled System (언커플시스템의 파라메트릭 모델링)

  • Yoon, Moon-Chul;Kim, Jong-Do;Kim, Kwang-Heui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.36-42
    • /
    • 2006
  • The analytical realization of uncoupled system was introduced in this study using times series and its spectrum analysis. The ARMAX spectra of time series methods were compared with the conventional FFT spectrum. Also, the response of second order system uncoupled was solved using the Runge-Kutta Gill method. In this numerical analysis, the displacement, velocity and acceleration were calculated. The displacement response among them was used for the power spectrum analysis. The ARMAX algorithm in time series was proved to be appropriate for the mode estimation and spectrum analysis. Using the separate response of first and second mode, each modes were calculated separately and the response of mixed modes was also analyzed for the mode estimation using several time series methods.

  • PDF

Free-Form Curve Interpolation Method for Shape Preservation (형태 보존성을 위한 자유 형태 곡선 보간 방법)

  • Lee, A-Ri;Park, Cheol-Ho;Sim, Jae-Hong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.758-765
    • /
    • 1999
  • Shape-preserving property is the important method that controls the complex free form curve/surface. Interpolation method for the existed Shape-Preservation had problems that it has needed the minimization of a curvature-related functions for calculating single-valued data. Solving this problem, in this paper, it proposed to the algorithm of generalizing C piecewise parametric cubic that has shape-preserving property for both Single-value data and Multivalue data. When there are the arbitrary tangents and two data, including shape-preserving property, this proposed method gets piecewise parametric cubic polynomial by checking the relation between the shape-preserving property and then calculates efficiently the control points using that. Also, it controls the initial shape using curvature distribution on curve segments.

  • PDF

A Study on the Automatic Elimination of Free Edge for Sheet Metal Forming Analysis (박판성형해석을 위한 자동 프리에지 제거에 관한 연구)

  • 유동진
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.614-622
    • /
    • 2004
  • A new approach for the automatic elimination of free edges in the finite element model for the analysis of sheet metal forming processes is presented. In general, the raw finite element model constructed from an automatic mesh generator is not well suited for the direct use in the downstream forming analysis due to the many free edges which requires tedious time consuming interactive graphic operations of the users. In the present study, a general method for the automatic elimination of free edges is proposed by introducing a CAD/CAE hybrid method. In the method a trimmed parametric surface is generated to fill the holes which are orginated from the free edges by using the one step elastic finite element analysis. In addition, mesh generation algorithm is suggested which can be used in the general trimmed surface. In order to verify the validity of the proposed method, various examples including actual automobile sheet metal parts are given and discussed.

Parametric modeling and shape optimization design of five extended cylindrical reticulated shells

  • Wu, J.;Lu, X.Y.;Li, S.C.;Xu, Z.H.;Wang, Z.D.;Li, L.P.;Xue, Y.G.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.217-247
    • /
    • 2016
  • Five extended cylindrical reticulated shells are proposed by changing distribution rule of diagonal rods based on three fundamental types. Modeling programs for fundamental types and extended types of cylindrical reticulated shell are compiled by using the ANSYS Parametric Design Language (APDL). On this basis, conditional formulas are derived when the grid shape of cylindrical reticulated shells is equilateral triangle. Internal force analysis of cylindrical reticulated shells is carried out. The variation and distribution regularities of maximum displacement and stress are studied. A shape optimization program is proposed by adopting the sequence two-stage algorithm (RDQA) in FORTRAN environment based on the characteristics of cylindrical reticulated shells and the ideas of discrete variable optimization design. Shape optimization is achieved by considering the objective function of the minimum total steel consumption, global and locality constraints. The shape optimization for three fundamental types and five extended types is calculated with the span of 30 m~80 m and rise-span ratio of 1/7~1/3. The variations of the total steel consumption along with the span and rise-span ratio are analyzed with contrast to the results of shape optimization. The optimal combination of main design parameters for five extended cylindrical reticulated shells is investigated. The total steel consumption affected by distribution rule of diagonal rods is discussed. The results show that: (1) Parametric modeling method is simple, efficient and practical, which can quickly generate different types of cylindrical reticulated shells. (2) The mechanical properties of five extended cylindrical reticulated shells are better than their fundamental types. (3) The total steel consumption of cylindrical reticulated shells is optimized to be the least when rise-span ratio is 1/6. (4) The extended type of three-way grid cylindrical reticulated shell should be preferentially adopted in practical engineering. (5) The grid shape of reticulated shells should be designed to equilateral triangle as much as possible because of its reasonable stress and the lowest total steel consumption.

A Restricted Partition Method to Detect Single Nucleotide Polymorphisms for a Carcass Trait in Hanwoo

  • Lee, Ji-Hong;Kim, Dong-Chul;Kim, Jong-Joo;Lee, Jea-Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1525-1528
    • /
    • 2011
  • The purpose of this study was to detect SNPs that were responsible for a carcass trait in Hanwoo populations. A non-parametric model applying a restricted partition method (RPM) was used, which exploited a partitioning algorithm considering statistical criteria for multiple comparison testing. Phenotypic and genotypic data were obtained from the Hanwoo Improvement Center, National Agricultural Cooperation Federation, Korea, in which the pedigree structure comprised 229 steers from 16 paternal half-sib proven sires that were born in Namwon or Daegwanryong livestock testing station between spring of 2002 and fall of 2003. A carcass trait, longissimus dorsi muscle area for each steer was measured after slaughter at approximately 722 days. Three SNPs (19_1, 18_4 and 28_2) near the microsatellite marker ILSTS035 on BTA6, around which the quantitative trait loci (QTL) for meat quality were previously detected, were used in this study. The RPM analyses resulted in two significant interaction effects between SNPs (19_1 and 18_4) and (19_1 and 28_2) at ${\alpha}$ = 0.05 level. However, under a general linear (parametric) model no interaction effect between any pair of the three SNPs was detected, while only one main effect for SNP19_1 was found for the trait. Also, under another non-parametric model using a multifactor dimensionality reduction (MDR) method, only one interaction effect of the two SNPs (19_1 and 28_2) explained the trait significantly better than the parametric model with the main effect of SNP19_1. Our results suggest that RPM is a good alternative to model choices that can find associations of the interaction effects of multiple SNPs for quantitative traits in livestock species.

Hull-form optimization of KSUEZMAX to enhance resistance performance

  • Park, Jong-Heon;Choi, Jung-Eun;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.100-114
    • /
    • 2015
  • This paper deploys optimization techniques to obtain the optimum hull form of KSUEZMAX at the conditions of full-load draft and design speed. The processes have been carried out using a RaPID-HOP program. The bow and the stern hull-forms are optimized separately without altering neither, and the resulting versions of the two are then combined. Objective functions are the minimum values of wave-making and viscous pressure resistance coefficients for the bow and stern. Parametric modification functions for the bow hull-form variation are SAC shape, section shape (U-V type, DLWL type), bulb shape (bulb height and size); and those for the stern are SAC and section shape (U-V type, DLWL type). WAVIS version 1.3 code is used for the potential and the viscous-flow solver. Prior to the optimization, a parametric study has been conducted to observe the effects of design parameters on the objective functions. SQP has been applied for the optimization algorithm. The model tests have been conducted at a towing tank to evaluate the resistance performance of the optimized hull-form. It has been noted that the optimized hull-form brings 2.4% and 6.8% reduction in total and residual resistance coefficients compared to those of the original hull-form. The propulsive efficiency increases by 2.0% and the delivered power is reduced 3.7%, whereas the propeller rotating speed increases slightly by 0.41 rpm.

Parametric modeling and shape optimization of four typical Schwedler spherical reticulated shells

  • Wu, J.;Lu, X.Y.;Li, S.C.;Xu, Z.H.;Li, L.P.;Zhang, D.L.;Xue, Y.G.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.813-833
    • /
    • 2015
  • Spherical reticulated shells are widely applied in structural engineering due to their good bearing capability and attractive appearance. Parametric modeling of spherical reticulated shells is the basis of internal analysis and optimization design. In the present study, generation methods of nodes and the corresponding connection methods of rod elements are proposed. Modeling programs are compiled by adopting the ANSYS Parametric Design Language (APDL). A shape optimization method based on the two-stage algorithm is presented, and the corresponding optimization program is compiled in FORTRAN environment. Shape optimization is carried out based on the objective function of the minimum total steel consumption and the restriction condition of strength, stiffness, slenderness ratio, stability. The shape optimization of four typical Schwedler spherical reticulated shells is calculated with the span of 30 m~80 m and rise to span ratio of 1/7~1/2. Compared with the shape optimization results, the variation rules of total steel consumption along with the span and rise to span ratio are discussed. The results show that: (1) The left and right rod-Schwedler spherical reticulated shell is the most optimized and should be preferentially adopted in structural engineering. (2) The left diagonal rod-Schwedler spherical reticulated shell is second only to left and right rod regarding the mechanical behavior and optimized results. It can be applied to medium and small-span structures. (3) Double slash rod-Schwedler spherical reticulated shell is advantageous in mechanical behavior but with the largest total weight. Thus, this type can be used in large-span structures as far as possible. (4) The mechanical performance of no latitudinal rod-Schwedler spherical reticulated shell is the worst and with the second largest weight. Thus, this spherical reticulated shell should not be adopted generally in engineering.

Multi-parametric Diagnosis Indexes and Emerging Pattern based Classification Technique for Diagnosing Cardiovascular Disease (심혈관계 질환 진단을 위한 복합 진단 지표와 출현 패턴 기반의 분류 기법)

  • Lee, Heon-Gyu;Noh, Ki-Yong;Ryu, Keun-Ho;Jung, Doo-Young
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.11-26
    • /
    • 2009
  • In order to diagnose cardiovascular disease, we proposed EP-based(emerging pattern- based) classification technique using multi-parametric diagnosis indexes. We analyzed linear/nonlinear features of HRV for three recumbent postures and extracted four diagnosis indexes from ST-segments to apply the multi-parametric diagnosis indexes. In this paper, classification model using essential emerging patterns for diagnosing disease was applied. This classification technique discovers disease patterns of patient group and these emerging patterns are frequent in patients with cardiovascular disease but are not frequent in the normal group. To evaluate proposed classification algorithm, 120 patients with AP (angina pectrois), 13 patients with ACS(acute coronary syndrome) and 128 normal people data were used. As a result of classification, when multi-parametric indexes were used, the percent accuracy in classifying three groups was turned out to be about 88.3%.

Optimum Design for Granular Compaction Group Piles Using the Genetic Algorithm (유전자 알고리즘을 이용한 조립토 다짐 군말뚝의 최적설계)

  • Kim, Hong-Taek;Hwang, Jung-Soon;Kim, Chan-Dong;Kang, Yun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.13-25
    • /
    • 2004
  • Granular compaction piles increase the load bearing capacity of the soft ground and reduce the settlement of foundation built on the reinforced soil. The granular compaction group piles also accelerate the consolidation of the soft ground and prevent the liquefaction caused by earthquake using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful method in Korea. In the present study, the optimum locations of granular compaction group piles using genetic algorithm are proposed. The results were shown that the bearing capacity was increased in the case concentrated on the central part of the group piles. Also, the optimum design for total weight of granular compaction group piles was carried out in consideration of the economical efficiency and parametric studies were performed to examine the effects of parameters at the design of granular compaction group piles.

  • PDF