• Title/Summary/Keyword: Parametric Study Method

Search Result 1,470, Processing Time 0.032 seconds

A Study on Road Noise Extraction Methods for Listening (청음용 자동차 로드노이즈 추출 방법 연구)

  • Kook, Hyung-Seok;Kim, Hyoung-Gun;Cho, Munhwan;Ih, Kang-Duck
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.844-850
    • /
    • 2016
  • This study pertains to the extraction of the road noise component of signals from a vehicle's interior noise via the traditional frequency domain and time domain system identification methods. For road noise extraction based on the frequency domain system identification method, the appropriate matrix inversion strategy is investigated and causal and non-causal impulse response filters are compared. Furthermore, appropriate data lengths for the frequency domain system identification method are investigated. In addition to the traditional road noise extraction methods based on frequency domain system identification, a new approach to extract road noise via the time domain system identification method based on a parametric input-output model is proposed and investigated in the present study. In this approach, instead of constructing a higher order model for the full-band road noise, input and output signals are processed in the subband domain and lower order parametric models optimal to each subband are determined. These parametric models are used to extract road noises in each subband; the full band road noise is then reconstructed from the subband road noises. This study shows that both the methods in the frequency domain and the time domain successfully extract the road noise from the vehicle's interior noise.

Parametric Study of Composite Laminated Conical Shells (복합적층 원뿔형 쉘의 파라미터 연구)

  • Son, Byung-Jik;Jung, Dae-Suck
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.41-49
    • /
    • 2007
  • In general, the curved structures have the engineering efficiency as well as a fine view compared with straight member. Also, composite materials are composed of two or more different materials to produce desirable properties for structural strength as compared to single ones. Shell structures with composite materials have many advantages in strength and weight reduction. Therefore, composite laminated conical shells are analyzed in this study. To solve differential equations of conical shells, this paper used finite difference method. Various parametric study according to the change of radius ratio, vertex angle and subtended angle are examined. The change of radius ratio, vertex angle and subtended angle mean the change from conical shells to cylindrical shells, conical shells to circular plates and open shells closed shells, respectively.

Parametric Study of a Wind Turbine Tower Vibration System Supported by Guy Cables (케이블 지지된 풍력발전기 타워 진동계의 변수 분석)

  • Park, Mu-Yeol;Kim, Seock-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1165-1169
    • /
    • 2006
  • Vibration characteristics of a small stand alone W/T(wind turbine) system are experimentally and theoretically investigated. Vibration resonance of the tower-cable system is monitored and the data are analysed with the analytical results. To predict the resonance speed of the cable supported WIT. Rayleigh-Ritz method is applied to the tower-guy cable coupled system. Parametric study on the relation of the cable tension. cable elasticity and resonance frequency is carried out. Results of the study are utilized to design the stable structure of small size wind turbines which consist of a pivoted tower and guy cables.

  • PDF

Parametric study on probabilistic local seismic demand of IBBC connection using finite element reliability method

  • Taherinasab, Mohammad;Aghakouchak, Ali A.
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.151-173
    • /
    • 2020
  • This paper aims to probabilistically evaluate performance of two types of I beam to box column (IBBC) connection. With the objective of considering the variability of seismic loading demand, statistical features of the inter-story drift ratio corresponding to the second, fifth and eleventh story of a 12-story steel special moment resisting frames are extracted through incremental dynamic analysis at global collapse state. Variability of geometrical variables and material strength are also taken into account. All of these random variables are exported as inputs to a probabilistic finite element model which simulates the connection. At the end, cumulative distribution functions of local seismic demand for each component of each connection are provided using histogram sampling. Through a parametric study on probabilistic local seismic demand, the influence of some geometrical random variables on the performance of IBBC connections is demonstrated. Furthermore, the probabilistic study revealed that IBBC connection with widened flange has a better performance than the un-widened flange. Also, a design procedure is proposed for WF connections to achieve a same connection performance in different stories.

A Study on the Dynamic Stability of the Long Vertical Beam Subjected to the Parametric Excitation (파라메터 기진에 의한 긴수직보의 동적안정성에 관한 연구)

  • Y.C. Kim;J.S. Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.69-82
    • /
    • 1991
  • The dynamic stability of the long vertical beam subjected to the periodic axial load is investigated. As a solution method, the Galerkin's method is used to obtain a set of coupled Mathieu type equations. To obtain the stability chart, both the perturbation method and numerical method are used, and the results of the both methods are compared with each other. The stability regions for the various boundary conditions are obtained, Also the effects of the viscous damping, the mean tension and the multi-frequency parametric excitation are studied in detail.

  • PDF

A Study on Change-Points in System Reliability

  • Kwang Mo Jeong
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.10-19
    • /
    • 1994
  • We study the change-point problem in the context of system reliability models. The maximum likelihood estimators are obtained based on the Jelinski and Moranda model. To find the approximate distribution of the change-point estimator, we suggest of parametric bootstrap method in which the estimators are substituted in the assumed model. Through an example we illustrate the proposed method.

  • PDF

Study on Integrated Workflow for Designing Sustainable Tall Building - With Parametric method using Rhino Grasshopper and DIVA for Daylight Optimization

  • Kim, Hyeong-ill
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.21-28
    • /
    • 2016
  • Purpose: The Objective of this study is to explore the capabilities of an integrated modelling and simulation workflow when applied to an experiment-based research process, aimed at deriving daylight optimization strategies specific to tall buildings. Methods: Two methods were devised to apply this workflow with the help of DIVA and Rhino/Grasshopper. The first method is a multiple variant analysis by setting up an appropriate base case and analysing its daylight and energy performance, forming the basis of comparison for subsequent cases for design variants. The second method involved setting up the base case within a site context and conducting a solar irradiation study. An architectural variables such as overhang and shading device, were then defined as inputs in the parametric definition in Grasshopper to control the selected variable. Results: While the first method took advantage of the speed and efficiency of the integrated workflow, the second method was derived based on the ability to directly process simulation data within the integrated, single-software platform of the proposed workflow. Through these methods, different architectural strategies were explored, both to increase daylight penetration and to reduce radiant heat gain. The focus is on methods by which this workflow can be applied to facilitate the experimental derivation of daylight optimization strategies that are specific to tall building design.

Computational study on prediction of electrical beam steering phenomenon of parametric array sound source (파라메트릭 어레이 음원의 전기적 빔 조향 현상 예측을 위한 수치 해석 기법 연구)

  • Been, Kyounghun;Ohm, Won-Suk;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.485-493
    • /
    • 2019
  • The parametric array phenomenon refers to the generation of a high directivity low frequency wave from a small size radiation plate using the nonlinearity of the medium. In order to improve the usability of parametric array, the beam steering method of low frequency wave is researched, and the beam steering phenomenon is predicted easily using the PD (product directivity) model. However, the PD model can only be applied to Gaussian sources under quasi-linear conditions. Also, the prediction accuracy of low frequency wave beam width is poor. In this paper, a method for predicting the beam steering characteristics of a parametric array that can overcome the limitation of the PD model is investigated. For this purpose, the numerical analysis algorithm of the KZK (Khokhlov-Zabolotskaya-Kuzentsov) equation widely used for parametric array phenomenon prediction is improved. Thus, the beam steering characteristics are calculated by applying the electrical beam steering condition and comparing experimental results. As a result, the numerical analysis using the modified KZK equation algorithm in this study confirms that the beam steering phenomenon can be predicted even in a parametric array source that does not correspond to the quasi-linear condition.

Numerical Analysis of Foundation Reinforcing Method using Load Transfer Apparatus (하중전이 장치를 이용한 기초보강공법의 수치해석적 연구)

  • Jeon, Jun-Seo;Choi, Ki-Sun;You, Young-Chan;Ha, Soo-Kyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.617-627
    • /
    • 2021
  • In this study, a numerical analysis using a three-dimensional numerical simulation was performed to assess the applicability of foundation reinforcing method using load transfer apparatus which can be used in the remodeling of deteriorated structures. The numerical model was validated through comparison with the real scale experimental results, and then a parametric study was performed to investigate the effect of friction coefficient of load transfer apparatus and axial stiffness of pile on the performance of foundation reinforcing method. It was confirmed that the foundation reinforcing method considered in this study can efficiently control the load applied to an existing foundation.

Use of Non-Parametric Statistical Method in Identifying Repetitive High Dose Jobs in a Nuclear Power Plant (비모수통계방법을 이용한 원자력발전소 작업자 반복성 고피폭작업 도출)

  • Young-Ho Cho;Young-Hoi Herr
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • The cost-effective reduction of occupational radiation dose (ORD) at a nuclear power plant could not be achieved without going through an extensive analysis of accumulated ORD data of existing plants. Through the data analysis, it is required to identify what are the jobs of repetitive high ORD at the nuclear power plant. In this study, Percentile Rank Sum Method (PRSM) is proposed to identify repetitive high ORD jobs, which is based on non-parametric statistical theory. As a case study, the method is applied to ORD data of maintenance and repair jobs at Kori units 3 and 4 that are pressurized water reactors with 950 MWe capacity and have been operated since 1986 and 1987, respectively in Korea. The results was verified and validated, and PRSM has been demonstrated to be an efficient method of analyzing the data.

  • PDF