• 제목/요약/키워드: Parametric Study

검색결과 3,726건 처리시간 0.025초

Parametric study on multichannel analysis of surface waves-based nondestructive debonding detection for steel-concrete composite structures

  • Hongbing Chen;Shiyu Gan;Yuanyuan Li;Jiajin Zeng;Xin Nie
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.89-105
    • /
    • 2024
  • Multichannel analysis of surface waves (MASW) method has exhibited broad application prospects in the nondestructive detection of interfacial debonding in steel-concrete composite structures (SCCS). However, due to the structural diversity of SCCS and the high stealthiness of interfacial debonding defects, the feasibility of MASW method needs to be investigated in depth. In this study, synthetic parametric study on MASW nondestructive debonding detection for SCCSs is performed. The aim is to quantitatively analyze influential factors with respect to structural composition of SCCS and MASW measurement mode. First, stress wave composition and propagation process in SCCS are studied utilizing 2D numerical simulation. For structural composition in SCCS, the thickness variation of steel plate, concrete core, and debonding defects are discussed. To determine the most appropriate sensor arrangement for MASW measurement, the effects of spacing and number of observation points, along with distances between excitation points, nearest boundary, as well as the first observation point, are analyzed individually. The influence of signal type and frequency of transient excitation on dispersion figures from forwarding analysis is studied to determine the most suitable excitation signal. The findings from this study can provide important theoretical guidance for MASW-based interfacial debonding detection for SCCS. Furthermore, they can be instrumental in optimizing both the sensor layout design and signal choice for experimental validation.

파라메트릭 어레이 음원의 전기적 빔 조향 현상 예측을 위한 수치 해석 기법 연구 (Computational study on prediction of electrical beam steering phenomenon of parametric array sound source)

  • 빈경훈;엄원석;문원규
    • 한국음향학회지
    • /
    • 제38권5호
    • /
    • pp.485-493
    • /
    • 2019
  • 파라메트릭 어레이란 매질의 비선형성을 이용하여 작은 크기의 방사판에서 고지향성 저주파음을 발생시키는 현상을 말한다. 이러한 파라메트릭 어레이의 유용성을 높이기 위해 저주파 음향 빔 조향 연구가 진행 되고 있으며, PD(Product Directivity) 모델을 이용하여 빔 조향 현상이 간편하게 예측되고 있다. 그러나 PD 모델은 준선형 조건에서 가우시안 음원만 적용이 가능하며, 저주파 음향 빔 폭의 예측 정확성이 떨어진다. 본 논문에서는 PD 모델의 한계를 극복할 수 있는 파라메트릭 어레이의 빔 조향 특성 예측 방법에 대해 연구하였다. 이를 위해 파라메트릭 어레이 현상 예측에 널리 사용되는 KZK(Khokhlov-Zabolotskaya-Kuzentsov) 방정식의 수치 해석 알고리즘을 개선하였다. 그리고 전기적 조향 조건을 적용하여 빔 조향 특성을 계산, 실험 결과와 비교 하였다. 그 결과 개선된 알고리즘을 이용하면 준선형 조건에 해당되지 않는 파라메트릭 어레이 음원에서도 저주파 빔 조향 특성 예측이 가능함을 확인하였다.

An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges: (2) Correlation study for verification

  • Kwak, Hyo-Gyoung;Shin, Dong Kyu
    • Structural Engineering and Mechanics
    • /
    • 제33권2호
    • /
    • pp.239-255
    • /
    • 2009
  • In the companion paper, a simple but effective analysis procedure termed an Improved Modal Pushover Analysis (IMPA) is proposed to estimate the seismic capacities of multi-span continuous bridge structures on the basis of the modal pushover analysis, which considers all the dynamic modes of a structure. In contrast to previous studies, the IMPA maintains the simplicity of the capacity-demand curve method and gives a better estimation of the maximum dynamic response in a bridge structure. Nevertheless, to verify its applicability, additional parametric studies for multi-span continuous bridges with large differences in the length of adjacent piers are required. This paper, accordingly, concentrates on a parametric study to review the efficiency and limitation in the application of IMPA to bridge structures through a correlation study between various analytical models including the equivalent single-degree-of-freedom method (ESDOF) and modal pushover analysis (MPA) that are usually used in the seismic design of bridge structures. Based on the obtained numerical results, this paper offers practical guidance and/or limitations when using IMPA to predict the seismic response of a bridge effectively.

자동차용 워터펌프의 스퀼소음 저감을 위한 영향도분석 (Parametric Study for the Squeal Noise Reduction of an Automobile Water Pump)

  • 김보형;정원영;백홍길;강동진;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.492-497
    • /
    • 2013
  • In this study, a parametric study is performed to investigate the squeal noise of an automobile water pump. The squeal noise studied in this paper is generated by the self-excited torsional resonance of the rotating shaft, and this noise is related to the stick-slip phenomenon of the mechanical seal in the water pump. The mechanical seal friction has the characteristics of the negative velocity-gradient. The equations of motion of multiple-degree-of-freedom torsional vibration model is constructed by the Holzer's method and then the equation is transformed to an equivalent single-degree-of-freedom torsional resonance simulation model. A squeal noise criteria is determined by the simulation model to perform the parametric study. The design parameters(the mass moment of inertia of the pulley, the mass moment of inertia of the impeller, the length of the shafts, the radius of the shafts, spinning speed of the shafts, the position of the mechanical seal, radius of the mechanical seal, and normal load of the mechanical seal) are investigated to confirm the stability for the squeal noise.

  • PDF

A new bridge-vehicle system part II: Parametric study

  • Chan, Tommy H.T.;Yu, Ling;Yung, T.H.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.21-38
    • /
    • 2003
  • The formulation of a new bridge-vehicle system using shell with eccentric beam elements has been introduced in a companion paper (Part I). The new system takes into account of the contribution of the twisting and pitching modes of vehicles to the bridge responses. It can also be used to study the dynamic transverse load distribution of a bridge. This paper presents a parametric study on the impact induced by one vehicle or multi-vehicle running across a bridge using the proposed model. Several parameters were considered as variables including the mass ratio, the speed parameter, the frequency ratio and the axle spacing parameter to investigate their effects on the impact factor. A total number of 189 cases were carried out in this parametric study. Within the realistic range of vehicle considered, the maximum impact factors could be 2.24, 1.78 and 1.49 for bridges with spans 10 m, 20 m and 30 m respectively.

초기 선형 설계를 위한 자동화 툴 개발 (Automatic Tool Development for Initial Hull Form Design)

  • 이주현;이신형;전동수;지혜련;김용수
    • 대한조선학회논문집
    • /
    • 제47권6호
    • /
    • pp.763-769
    • /
    • 2010
  • Thanks to the rapid advancement of computational power and development of numerical methods, Computational fluid dynamics techniques are being used widely for the prediction of ship resistance performance. In the present study, an automatic tool was developed to facilitate hull form modification, consequent mesh generation, and flow analysis for parametric study. It is a tedious job to go back and forth between geometry modification and mesh generation for every hull form variation. With the developed tool, users can make multiple hull form variation and their hull form performance prediction easily in a few simple steps. The verification of the developed tool was done by applying it to resistance performance parametric study of a generic POD propulsion cruise ship with different lengths of bow and stern. It is believed that the tool can be extended to more sophisticated hull form variation and help optimize the ship performance more efficiently.

자동차용 워터펌프의 스퀼소음 저감을 위한 영향도 분석 (Parametric Study for the Squeal Noise Reduction of an Automobile Water Pump)

  • 김보형;정원영;백홍길;강동진;정진태
    • 한국소음진동공학회논문집
    • /
    • 제23권7호
    • /
    • pp.624-630
    • /
    • 2013
  • In this study, a parametric study is performed to investigate the squeal noise of an automobile water pump. The squeal noise studied in this paper is generated by the self-excited torsional resonance of the rotating shaft, and this noise is related to the stick-slip phenomenon of the mechanical seal in the water pump. The mechanical seal friction has the characteristics of the negative velocity-gradient. The equations of motion of multiple-degree-of-freedom torsional vibration model is constructed by the Holzer's method and then the equation is transformed to an equivalent single-degree-of-freedom torsional resonance simulation model. A squeal noise criteria is determined by the simulation model to perform the parametric study. The design parameters(the mass moment of inertia of the pulley, the mass moment of inertia of the impeller, the length of the shafts, the radius of the shafts, spinning speed of the shafts, the position of the mechanical seal, radius of the mechanical seal, and normal load of the mechanical seal) are investigated to confirm the stability for the squeal noise.

Parametric studies on punching shear behavior of RC flat slabs without shear reinforcement

  • Elsamak, Galal;Fayed, Sabry
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.355-367
    • /
    • 2020
  • This paper proposed a numerical investigation based on finite elements analysis (FEA) in order to study the punching shear behavior of reinforced concrete (RC) flat slabs using ABAQUS and SAP2000 programs. Firstly, the concrete and the steel reinforcements were modeled by hexahedral 3D solid and linear elements respectively, and the nonlinearity of the used materials was considered. In order to validate this model, experimental results considered in literature were compared with the proposed FE model. After validation, a parametric study was performed. The parameters include the slab thickness, the flexure reinforcement ratios and the axial membrane loads. Then, to reduce the time of FEA, a simplified modelling using 3D layered shell element and shear hinge concept was also induced. The effect of the footings settlement was studied using the proposed simplified nonlinear model as a case study. Results of numerical models showed that increase of the slab thickness by 185.7% enhanced the ultimate load by 439.1%, accompanied with a brittle punching failure. The punching failure occurred in one of the tested specimens when the tensile reinforcement ratio increased more than 0.65% and the punching capacity improved with increasing the horizontal flexural reinforcement; it decreased by 30% with the settlement of the outer footings.

Mechanical performance study and parametric analysis of three-tower four-span suspension bridges with steel truss girders

  • Cheng, Jin;Xu, Mingsai;Xu, Hang
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.189-198
    • /
    • 2019
  • This paper aims to study the mechanical performance of three-tower four-span suspension bridges with steel truss girders, including the static and dynamic characteristics of the bridge system, and more importantly, the influence of structural parameters including the side-main span ratio, sag-to-span ratio and the girder stiffness on key mechanical indices. For this purpose, the Oujiang River North Estuary Bridge which is a three-tower four-span suspension bridge with two main spans of 800m under construction in China is taken as an example in this study. This will be the first three-tower suspension bridge with steel truss girders in the world. The mechanical performance study and parametric analysis are conducted based on a validated three-dimensional spatial truss finite element model established for the Oujiang River North Estuary Bridge using MIDAS Civil. It is found that a relatively small side-main span ratio seems to be quite appropriate from the perspective of mechanical performance. And decreasing the sag-to-span ratio is an effective way to reduce the horizontal force subjected to the midtower and improve the antiskid safety of the main cable, while the vertical stiffness of the bridge will be reduced. However, the girder stiffness is shown to be of minimal significance on the mechanical performance. The findings from this paper can be used for design of three-tower suspension bridges with steel truss girders.

양방향 BSS 구조의 형상 매개 변수 연구 (Geometrical Parametric Study on Two-Way Beam String Structures)

  • 이승혜;서민희;박상은;김선명;이기학;이재홍
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.69-76
    • /
    • 2019
  • A Beam String Structure (BSS) is a type of hybrid structures, which is composed of upper structural members, lower strings, and struts. Due to the advantages that the pre-tensioned strings elicit pre-caber of the upper structural members, the deflection can be greatly reduced without increasing the structural member size. In this study, a two-way beam string structure is proposed to endure bi-directional loading. The two-way beam string structure consists of two cable parts, namely, sagging and arch-shaped cables. A parametric study is presented aimed at proposing design guide lines of the two-way beam string structures. Numerical finite element analyses through the ABAQUS package were implemented to obtain their behaviors.