• Title/Summary/Keyword: Parametric Study

Search Result 3,721, Processing Time 0.033 seconds

A numerical Study for Improvement of Indoor Air Quality of Apartment House (공동주택 단지의 실내 공기질 향상을 위한 수치 해석적 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Hong, Ji-Eun;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.521-530
    • /
    • 2009
  • This study has been made to execute a research in order to lead the improvement of indoor air quality, examining the indoor ventilation characteristics by using a numerical analysis method. To this end an extensive parametric investigation are made according to various external flow variables such as main wind direction and wind speed by season, building layout design, and location of ventilators, etc. in Daedeok Techno Valley, one of large-scaled apartment in Daejeon. It is observed there was a significant difference of main wind direction between summer and winter. The main wind direction in summer was a south wind, and on the contrary the direction in winter is northnorthwest, which is similar to the average main wind direction for 10 years. One of the important calculation results is that the change of wind direction causes a significant effect on the apartment ventilation by the change of pressure difference around each complex of apartment. In case of favorable area of ventilation, the indoor ventilation rate can meet 0.7 ACH from the standard value only with natural ventilation. On the contrary, in other area the value was much lower than the standard value. If the calculation result applies to the design of layout apartment or placement of ventilators, it will be greatly helpful to the energy saving because it can be parallel with the natural ventilation to help securing ventilation rate, not much depending on the mechanical ventilation.

Modelling and Analysis of Roll-Type Steel Mats for Rapid Stabilization of Permafrost (I) - Modeling - (영구동토 급속안정화를 위한 롤타입강재매트의 모델링과 해석(I) - 해석모델의 수립 -)

  • Moon, Do Young;Kang, Jae Mo;Lee, Janggeun;Lee, Sang Yoon;Zi, Goangseuo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.97-107
    • /
    • 2014
  • Finite element modelling and analysis were conducted for the roll-type steel mats which were placed on loose sand and subjected to a standard truck wheel load in this study. The roll-type steel mats mean that the steel mats can be folded as a circle shape for the carrying to fields in cold regions where workability is limited and are developed for a rapid rehabilitation method for roadway across soft ground which is caused by thawing during the summer season in cold regions. The model is composed of link elements to simulate nonlinear behavior of connections between steel mats, thick shell elements to have flexural stiffness of the steel mats, and springs to simulate characteristics of foundation soils. The structural behaviors of the shell, link elements, and springs were verified at each modelling step through experiment and analysis. Beam and shell analysis without the link elements were conducted and compared to results obtained from the model presented in this study. Significant vertical displacement is shown in the shell model with hinge connections. Therefore, the results demonstrate that the analysis model for the roll-type steel mats on loose sand needs further detail parametric studies.

Load Distribution Factors for Two-Span Continuous I-Girder Bridges (2경간 연속 I-형교의 하중분배계수)

  • Back, Sung Yong;Shin, Gi Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.233-245
    • /
    • 2007
  • Previous finite element studies have shown that AASHTO Standard load distribution factor (LDF) equations appear to be conservative for longer spans and larger girder spacing, but too permissible for short spans and girder spacing. AASHTO LRFD specification defines the distribution factor equation for girder spacing, span length, slab thickness, and longitudinal stiffness. However, this equation requires an iterative procedure to correctly determine the LDF value due to an initially unknown longitudinal stiffness parameter. This study presents a simplified LDF equation for interior and exterior girders of two-span continuous I-girder bridges that does not require an iterative design procedure. The finite element method was used to investigate the effect of girder spacing, span length, slab thickness, slab width, and spacing and size of bracing. The computer program, GTSTRUDL, was used to idealize the bridge superstructures as the eccentric beam model, the concrete slab by quadrilateral shell elements, steel girders by space frame members, and the composite action between these elements by rigid links. The distribution factors obtained from these analyses were compared with those from the AASHTO Standard and LRFD methods. It was observed through the parametric studies that girder spacing, span length, and slab thickness were the dominant parameters compared with others. The LRFD distribution factor for the interior girder was found to be conservative in most cases, whereas the factor for the exterior girder to be unconservative in longer spans. Furthermore, a regression analysis was performed to develop simplified LDF formulas. The formulas developed in this study produced LDF values that are always conservative to those from the finite element method and are generally smaller than the LDF values obtained from the AASHTO LRFD specification. The proposed simplified equation will assist bridge engineers in predicting the actual LDF in two-span continuous I-girder bridges.

Numerical Study on Thermal Performances of Multi Heat Source Heating System Using Butane for Electric Vehicle (전기자동차용 부탄 연료 복합열원 히팅시스템의 열적 성능에 관한 수치적 연구)

  • Bang, You-Ma;Seo, Jae-Hyeong;Patil, Mahesh Suresh;Cho, Chong-Pyo;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.725-731
    • /
    • 2016
  • This study numerically investigates the thermal performance of a 2.0-kW butane-based combustion heating system for an electric vehicle under cold conditions. The system is used for cabin space heating and coolant-based battery thermal management. ANSYS CFX 17 software was used for parametric analysis. The mass flow rates of cold air and coolant were varied, and their effects were compared. The numerical results were validated with theoretical studies, which showed an error of 0.15%. As the outside air mass flow rates were increased to 0.005, 0.01, and 0.015 kg/s, the cabin supply air temperature decreased continuously while the coolant outlet temperature increased. When the coolant mass flow rates were increased to 0.005, 0.01 and 0.015 kg/s, the air temperature increased while the coolant outlet temperatures decreased. The optimal mass flow rates are discussed in a consideration of the requirements for high cabin heating capacity and efficient battery thermal management.

Numerical Investigation on Seepage Stability in Offshore Bucket Cut-off Walls (수치해석을 이용한 대형원형강재 가물막이의 침투 안정성 분석)

  • Ssenyondo, Vicent;Tran, Van An;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.73-82
    • /
    • 2017
  • Recently, offshore bucket cut-off walls were developed to solve several problems in conventional offshore cut-off walls. In this study, a numerical analysis was carried out to investigate the seepage stability of offshore bucket cut-off walls. The ground was assumed as uniform homogeneous sand and steady state flow conditions were applied. The flow condition was compared among 2-dimensional flow (2-D), 2-dimensional concentrated flow (2-DC), and axisymmetric flow. The analysis results showed that the seepage velocities in axisymmetric flow were about 1.5 and 2 times larger than those of 2-DC and 2-D flow conditions, respectively. Thereafter, the axisymmetric flow condition was applied because the seepage flow was concentrated toward the center of the circular-shaped wall. A parametric study was performed varying bucket radius, penetration depth, total head difference between in and outside of the wall. The exit gradient, which used for the calculation of piping stability, decreased with increase of the penetration depth and bucket radius. Design charts were proposed to estimate the factor of safety and the exit gradient at various analysis conditions. Finally, the design equation was proposed to calculate the exit gradient for the preliminary design of the bucket cut-off wall.

The study on the school resilience of grandparent-grandchildren family adolescent through mediation effect of protective factor (보호요인의 매개효과를 통한 조손가족 청소년의 학교 적응유연성에 관한 연구)

  • Song, Yoo-Mee;Lee, Yun-Hyung
    • Korean Journal of Social Welfare Studies
    • /
    • v.40 no.3
    • /
    • pp.41-68
    • /
    • 2009
  • Grandparent-grandchildren family adolescents(GGFAs) need to be well discussed because they tend to be more influenced by the negative surroundings than ordinary family adolescents. Over the past few years, several studies have been made on the correlation between the risk factor, the protective factor and the school resilience of GGFAs, but these studies have the limit to explain the only correlation between the one factor and the school resilience. So the purpose of this study was to examine not only the direct effect between the risk factor and the protective factor, but also the parametric path and effect that the one factor has influence on the correlation between the another factor and the school resilience of GGFAs. We investigated the 328 GGFAs in Korea, and the analytic method used was the Structural Equation Modeling(SEM). The followings are the results of this paper. It was found that the model adaptability had a considerable validity by inspecting the SEM, which showed not only the direct effect between the risk factor, protective factor and the school resilience of GGFAs, but also the mediation effect by the protective factor. The risk factors - the indifference of teacher, the negative attachment relationship, melancholy, uneasiness etc - had a negative influence on the school resilience of GGFAs. The protective factors - the supporss etteacher, self-esteem etc - had a positive influence on the school resilience of GGFAs. The protective factors were found to reduce the negative influence on the school resilience of GGFAs.

Development of a Conceptual Estimate Methodology for Plant Construction Projects (플랜트 건설 프로젝트를 위한 개산견적 방법론 개발)

  • Kim, Hyun-Joong;Choi, Jaehyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.141-150
    • /
    • 2019
  • In the overseas plant construction market, the domain construction firms' construction capability has been greatly improved, but the capability of project management is evaluated to be insufficient compared to the technical aspect. Project management capabilities from the initial planning stage of project execution are regarded as the core competence of advanced construction companies. Among them, it is urgent to improve the capacity of conceptual estimate for domestic companies. In this study, the researchers surveyed and analyzed the methodology of estimating project cost in the planning phase of the plant project and developed an estimation method by conducting a case study analysis. Based on the logic of the cost index and parametric estimation method among the existing estimation methodology, the estimation tool was developed by deriving the input and output variables tailored to the plant project. The validity of the proposed methodology was evaluated by comparing the accuracy between the project estimate amount of the case project and the actual project amount. In order to increase the utilization of the developed conceptual estimate methodology,for plant construction project, it is necessary to systematize the data of the historical project data. Increasing the accuracy of future project cost estimates is directly related to increasing project award and profitability of the domestic construction company.

Probabilistic Fatigue Life Evaluation of Steel Railway Bridges according to Live-Dead Loads Ratio (강철도교의 활하중-사하중 비에 따른 확률기반 피로수명 평가)

  • Lee, Sangmok;Lee, Young-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.339-346
    • /
    • 2019
  • Various studies have been conducted to evaluate the probabilistic fatigue life of steel railway bridges, but many of them are based on a relatively simple model of crack propagation. The model assumes zero minimum stress and constant loading amplitude, which is not appropriate for the fatigue life evaluation of railway bridges. Thus, this study proposes a new probabilistic method employing an advanced crack propagation model that considers the live-dead load ratio for the fatigue life evaluation of steel railway bridges. In addition, by using the rainflow cycle counting algorithm, it can handle variable-amplitude loading, which is the most common loading pattern for railway bridges. To demonstrate the proposed method, it was applied to a numerical example of a steel railway bridge, and the fatigue lives of the major components and structural system were estimated. Furthermore, the effects of various ratios of live-dead loads on bridge fatigue life were examined through a parametric study. As a result, with the increasing live-dead stress ratio from 0 to 5/6, the fatigue lives can be reduced by approximately 30 years at both the component and system levels.

A Study of brain Atlases in Hippocampus Volume Measurement Using IBASPM (IBASPM을 이용한 해마체적 측정에서 뇌 Atlases에 대한 고찰)

  • Kim, Ju-ho;Lee, Ju-won;Kim, Seong-hu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.981-984
    • /
    • 2014
  • Volumetric measurement of hippocampus using IBASPM, the 20's normal adults 10 people's brain images were acquired in order to assess the changes according to the type of the Atlas. Images was obtained using MPRAGE of a 3-D gradient echo pulse sequence on Head matrix coil of 1.5T MRI system. The results of Paired t-test using obtained volume of hippocampus depending on the type of the Atlas, Atlas69-Altas84, Atlas69-Atlas116(p=0.729, 0.729) in the left hippocampus and Atlas69-Atlas84, Atlas69-Atlas116(p=0.219, 0.219) in right hippocampal formation were no significant differences but in the area except this, there was significant difference(p=0.000). The volume of the hippocampus using Atlas84 and Atlas116, represented the same value and there was no significant difference. In the image analysis using the overlay of atlas image and original image, Atlas71 could be found that the area of hippocampus did mismatch. In the case of atlas used in this study, because it has been developed by the westerners, there are differences between brain of asian. It would be needed to development of new Atlas for high accuracy measurement of the volume of hippocampus.

  • PDF

Parametric Study on Effect of Floating Breakwater for Offshore Photovoltaic System in Waves (해상태양광 구조물용 부유식 방파제의 파랑저감성능 평가)

  • Kim, Hyun-Sung;Kim, Byoung Wan;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.109-117
    • /
    • 2022
  • There has been an increasing number of studies on photovoltaic energy generation system in an offshore site with the largest energy generation efficiency, as increasing the researches and developments of renewable energies for use of offshore space and resources to replace existing fossil fuels and resolve environmental challenges. For installation and operation of floating photovoltaic systems in an offshore site with harsher environmental conditions, a stiffness of structural members comprising the total system must be reinforced to inland water spaces as dams, reservoirs etc., which have relatively weak condition. However, there are various limitations for the reinforcement of structural stiffness of the system, including producible size, total mass of the system, economic efficiency, etc. Thus, in this study, a floating breakwater is considered for reducing wave loads on the system and minimizing the reinforcement of the structural members. Wave reduction performances of floating breakwaters are evaluated, considering size and distance to the system. The wave loads on the system are evaluated using the higher-order boundary element method (HOBEM), considering the multi-body effect of buoys. Stresses on structural members are assessed by coupled analyses using the finite element method (FEM), considering the wave loads and hydrodynamic characteristics. As the maximum stresses on each of the cases are reviewed and compared, the effect of floating breakwater for floating photovoltaic system is checked, and it is confirmed that the size of breakwater has a significant effect on structural responses of the system.