• Title/Summary/Keyword: Parametric Study

Search Result 3,721, Processing Time 0.027 seconds

Estimation of Future Design Flood Under Non-Stationarity for Wonpyeongcheon Watershed (비정상성을 고려한 원평천 유역의 미래 설계홍수량 산정)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Park, Jihoon;Jun, Sang Min;Song, Jung Hun;Kim, Kyeung;Lee, Kyeong-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.139-152
    • /
    • 2015
  • Along with climate change, it is reported that the scale and frequency of extreme climate events show unstable tendency of increase. Thus, to comprehend the change characteristics of precipitation data, it is needed to consider non-stationary. The main objectives of this study were to estimate future design floods for Wonpyeongcheon watershed based on RCP (Representative Concentration Pathways) scenario. Wonpyeongcheon located in the Keum River watershed was selected as the study area. Historical precipitation data of the past 35 years (1976~2010) were collected from the Jeonju meteorological station. Future precipitation data based on RCP4.5 were also obtained for the period of 2011~2100. Systematic bias between observed and simulated data were corrected using the quantile mapping (QM) method. The parameters for the bias-correction were estimated by non-parametric method. A non-stationary frequency analysis was conducted with moving average method which derives change characteristics of generalized extreme value (GEV) distribution parameters. Design floods for different durations and frequencies were estimated using rational formula. As the result, the GEV parameters (location and scale) showed an upward tendency indicating the increase of quantity and fluctuation of an extreme precipitation in the future. The probable rainfall and design flood based on non-stationarity showed higher values than those of stationarity assumption by 1.2%~54.9% and 3.6%~54.9%, respectively, thus empathizing the necessity of non-stationary frequency analysis. The study findings are expected to be used as a basis to analyze the impacts of climate change and to reconsider the future design criteria of Wonpyeongcheon watershed.

Study on Peridynamic Interlayer Modeling for Multilayered Structures (가상 절점을 이용한 적층 구조물의 페리다이나믹 층간 결합 모델링 검토)

  • Ahn, Tae Sik;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.389-396
    • /
    • 2017
  • Peridynamics has been widely used in the dynamic fracture analysis of brittle materials. Recently, various crack patterns(compact region, floret, Hertz-type crack, etc.) of multilayered glass structures in experiments(Bless et al. 2010) were implemented with a bond-based peridynamic simulation(Bobaru et al.. 2012). The actual glass layers are bound with thin elastic interlayer material while the interlayer is missing from the peridynamic model used in the previous numerical study. In this study, the peridynamic interlayer modeling for the multilayered structures is proposed. It requires enormous computational time and memory to explicitly model very thin interlayer materials. Instead of explicit modeling, fictitious peridynamic particles are introduced for modeling interlayer materials. The computational efficiency and accuracy of the proposed peridynamic interlayer model are verified through numerical tests. Furthermore, preventing penetration scheme based on short-range interaction force is employed for the multilayered structure under compression and verified through parametric tests.

A Sensitivity Study on Nuclide Release from the Near-field of the Pyroprocessed Waste Repository System: Part 1. A Probabilistic Approach (파이로처리 폐기물 처분 시스템 근계 영역 내 핵종 유출 민감도: 제 1 부 확률론적 접근)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.19-35
    • /
    • 2014
  • A parametric sensitivity to the annual exposure dose rate to the farming exposure group has been probabilistically carried out for three principal elements associated with the nuclide transport behavior in the near-field of the pyroprocessed waste repository system. Credit time for both metal and ceramic containers, annual nuclide release rete, and the degree of loss of bentonite buffer around the container are selected as the elements and investigated for important nuclides. All the elements are shown to be sensitive to the results. Methodology studied through this study and the results are expected to make a good feedback to the repository design. As a follow-up study, separated in Part 2, the A-KRS will be deterministically assessed and then compared among each other with the normal, the worst, and the best case scenarios associated with their extreme values these elements could have.

Side Resistance of Rock Socketed Drilled Shafts in Consideration of the Shaft Size Effects (크기효과를 고려한 암반에 근입된 현장타설말뚝의 주면마찰력)

  • Sagong Myung;Paik Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.115-124
    • /
    • 2004
  • According to Sagong and Paik (2003), the side resistance of rock socketed drilled shafts is affected by rock quality, types, uniaxial compressive strength, and confining stress. Their approach based upon the Hoek-Brown criterion provides reasonable predictions of the side resistance. In this study, we propose an equation to calculate the side resistance considering size effects of the shafts and investigate the influence of drilled shaft diameter on the side resistance. A new method employs the modified Hoek-Brown criterion together with an empirical size effect of rock core. From the previous field tests, 12 pile load test results were collected and compared with prediction calculated from the equation proposed in this study. In a given condition, similar results between measurement and estimate are observed. From the parametric study on the GSI, confining stress, uniaxial compressive of intact rock and pile size, it is shown that uniaxial compressive strength is the most influential parameter on the side resistance. Though pile size shows the least influence on the resistance, the size effect is apparent as rock quality increases.

A Study about Effects of Osmotic-Controlled Release Oral Delivery System Methylphenidate on Regional Cerebral Blood Flow in Korean Children with Attention-Deficit Hyperactivity Disorder (주의력결핍 과잉행동장애 아동에서 Osmotic-Controlled Release Oral Delivery System Methylphenidate 투여가 국소 대뇌관류에 미치는 영향)

  • Yang, Young-Hui;Hwang, Jun-Won;Kim, Boong-Nyun;Kang, Hyejin;Lee, Jae-Sung;Lee, Dong-Soo;Cho, Soo-Churl
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.27 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • Objectives: The objective of this study was to examine the effects of osmotic-controlled release oral delivery system methylphenidate on changes in regional cerebral blood flow (rCBF) in children with attention-deficit hyperactivity disorder (ADHD) using single photon emission computed tomography (SPECT). Methods: A total of 26 children with ADHD (21 boys, mean age: $9.2{\pm}2.05$ years old) were recruited. Each ADHD participant was examined for changes in rCBF using technetium-99m-hexamethylpropylene amine oxime brain SPECT before and after 8 weeks methylphenidate medication. Brain SPECT images of pediatric normal controls were selected retrospectively. SPECT images of ADHD children taken before medication were compared with those of pediatric normal controls and those taken after medication using statistical parametric mapping analysis on a voxel-wise basis. Results: Before methylphenidate medication, significantly decreased rCBF in the cerebellum and increased rCBF in the right precuneus, left anterior cingulate, right postcentral gyrus, right inferior parietal lobule and right precentral gyrus were observed in ADHD children compared to pediatric normal controls (p-value<.0005, uncorrected). After medication, we observed significant hypoperfusion in the left thalamus and left cerebellum compared to pediatric normal controls (p-value<.0005, uncorrected). In the comparison between before medication and after medication, there was significant hyperperfusion in the superior frontal gyrus and middle frontal gyrus and significant hypoperfusion in the right insula, right caudate, right middle frontal gyrus, left subcallosal gyrus, left claustrum, and left superior temporal gyrus after methylphenidate medication (p-value<.0005, uncorrected). Conclusion: This study supports dysfunctions of fronto-striatal structures and cerebellum in ADHD. We suggest that methylphenidate may have some effects on the frontal lobe, parietal lobe, and cerebellum in children with ADHD.

DEA Models and Application Procedure for Performance Evaluation on Governmental Funding Projects for IT Small and Medium-sized Enterprises with Exogenously Fixed Variables of Corporate Competency (기업역량을 고려한 외생고정변수를 갖는 IT중소기업 정부자금지원정책 성과평가를 위한 DEA모형 및 활용절차)

  • Park, Sung-Min;Kim, Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.364-378
    • /
    • 2008
  • Data Envelopment Analysis(DEA) models can be used for performance evaluation on governmental funding projects for IT small and medium-sized enterprises associated with multiple-outputs/multiple-inputs. In order to enhance the accuracy of DEA efficiency scores, DEA models with exogenously fixed variables are required where the corporate competency is taken into account. Additionally, it is necessary to use multiple DEA basic as well as extended models so as to relax the restriction on the performance evaluation to relying on a single DEA model. In this study; 1)a DEA data structure is designed including exogenously fixed variables representing corporate asset, revenue and the number of employees at the point in time that the governmental funding project concerned is initiated; 2)DEA basic as well as extended models are established according to the DEA data structure presented abovementioned; and 3)a case study is illustrated with an empirical testbed dataset. As for the DEA basic models, CCR, BCC, Super-efficiency model are adopted. The DEA extended models are developed based on the models associated with noncontrollable and nondiscretionary variables. In the case study, it is explained a comparison of DEA models and also major numerical outcomes such as efficiency scores, ranks derived from each DEA model are integrated using Analytic Hierarchy Process(AHP) weights. Performance significance with DEA efficiency scores between technical categories are tested based not only on parametric but also nonparametric single-factor analysis of variance method.

A Study of Design Parameter for the Field Application of High Performance Permanent Form (HPPF) Using Stainless Steel Fiber (스테인레스 강섬유를 이용한 고성능 영구거푸집적용 벽체구조물의 설계변수 연구)

  • Sim, Jong Sung;Oh, Hong Seob;Ju, Min Kwan;Ha, Woo Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.59-66
    • /
    • 2008
  • In the construction site, to improve the man-dependent form work, non-stripping form has been studied but the developed non-stripping form was hard to applied with respect to the cost, form size and performance. This study is for evaluating the adaptability of the developed non-stripping form named as high performance permanent form (HPPF). To do this, the analytical approach and parametric study were performed based on the research for fundamental material characteristic of the HPPF. The target concrete structure is a wall structure because of its effectiveness of HPPF. To evaluate the structural efficiency of the HPPF applied wall structure, FEM analysis was performed to decide the maximum placing height at one time then it was applied to design the wall structure. In the result of the analysis, the HPPF applied wall structure showed the lots of advantages that it can reduce the cost resulted from reducing concrete and steel rebar even if it has same structural performance to the conventional concrete wall structure with same dimension. With this analysis result, it can be evaluated that the HPPF applied concrete structure can be a concrete structure with the long term durability in site.

The Modified Coefficient of the Orthotropic Flexural Rigidity for Stiffened Plates with Rectangular Ribs Considering the Dimensions of Ribs (리브 제원을 고려한 평강 리브 보강판의 직교이방성 휨 강성 수정 계수)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • In this study, to improve on the inaccurate results of the orthotropic plate analysis, we aim to propose a modified coefficient of the orthotropic flexural rigidity for stiffened plates with rectangular ribs considering the dimensions of ribs. The sensitivity of the flexural rigidity and the maximum displacement according to the dimensions of stiffened plates were analyzed and the parametric study on the modified coefficient of the orthotropic flexural rigidity of stiffened plates was performed. The results show that the ratio of modified coefficients can be expressed as a function for each rib height, space and thickness regardless of plate thickness and the modified flexural rigidity can be easily estimated from the ratio functions of modified coefficients. The application of the coefficient function to various types of stiffened plates with different boundary conditions, aspect ratios, rib arrangement and loading size shows that the proposed function improves the accuracy of the orthotropic plate analysis compared with the results of the reference. Therefore, the orthotropic plate analysis of stiffened plates with rectangular ribs can easily achieve more accurate results using the coefficient function proposed in this study.

Groundwater Flow Analysis around Hydraulic Excavation Damaged Zone (수리적 굴착손상영역에서의 지하수유동 특성에 관한 연구)

  • Park, Jong-Sung;Ryu, Dong-Woo;Ryu, Chang-Ha;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.109-118
    • /
    • 2007
  • The excavation damaged zone (EDZ) is an area around an excavation where in situ rock mass properties, stress condition. displacement. groundwater flow conditions have been altered due to the excavation. Various studies have been carried out on EDZ, but most studies have been focused on the mechanical bahavior of EDZ by in situ experiment. Even though the EDZ could potentially form a high permeable pathway of groundwater flow, only a few studies were performed on the analysis of groundwater flow in EDZ. In this study, the' hydraulic EDZ' was defined as the rock Lone adjacent to the excavation where the hydraulic aperture has been changed due to the excavation. And hydraulic EDZ (hydraulic aperture changed zone) estimated by two-dimensional DEM program was considered in three-dimensional DFN model. From this approach the groundwater flow characteristics corresponding to hydraulic aperture change were examined. Together. a parametric study was performed to examine the boundary conditions that frequently used in DFN analysis such as constant head or constant flux condition. According to the numerical analysis, hydraulic aperture change induced by the hydraulic-mechanical interaction becomes one of the most important factors Influencing the hydraulic behavior of jointed rock masses. And also from this study, we suggest the proper boundary condition in three-dimensional DFN model.

Polygonal Grain-Based Distinct Element Modelling of Mechanical Characteristics and Transverse Isotropy of Rock (다각형 입자 기반 개별요소모델을 통한 암석의 역학적 특성과 횡등방성 모사)

  • Park, Jung-Wook;Park, Chan;Ryu, Dongwoo;Choi, Byung-Hee;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.235-252
    • /
    • 2016
  • This study presents a methodology to reproduce the mechanical behavior of isotropic or transversely isotropic rock using the polygonal grain-based distinct element model. A numerical technique to monitor the evolution of micro-cracks during the simulation was developed in the present study, which enabled us to examine the contribution of tensile cracking and shear cracking to the progressive process of the failure. The numerical results demonstrated good agreement with general observations from rock specimens in terms of the behavior and the evolution of micro-cracks, suggesting the capability of the model to represent the mechanical behavior of rock. We also carried out a parametric study as a fundamental work to examine the relationships between the microscopic properties of the constituents and the macroscopic behavior of the model. Depending on the micro-properties, the model exhibited a variety of responses to the external load in terms of the strength and deformation characteristics. In addition, a numerical technique to reproduce the transversely isotropic rock was suggested and applied to Asan gneiss from Korea. The behavior of the numerical model was in good agreement with the results obtained in the laboratory-scale experiments of the rock.