• Title/Summary/Keyword: Parametric Model

Search Result 2,275, Processing Time 0.033 seconds

Evaluation of goodness of fit of semiparametric and parametric models in analysis of factors associated with length of stay in neonatal intensive care unit

  • Kheiry, Fatemeh;Kargarian-Marvasti, Sadegh;Afrashteh, Sima;Mohammadbeigi, Abolfazl;Daneshi, Nima;Naderi, Salma;Saadat, Seyed Hossein
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.9
    • /
    • pp.361-367
    • /
    • 2020
  • Background: Length of stay is a significant indicator of care effectiveness and hospital performance. Owing to the limited number of healthcare centers and facilities, it is important to optimize length of stay and associated factors. Purpose: The present study aimed to investigate factors associated with neonatal length of stay in the neonatal intensive care unit (NICU) using parametric and semiparametric models and compare model fitness according to Akaike information criterion (AIC) between 2016 and 2018. Methods: This retrospective cohort study reviewed 600 medical records of infants admitted to the NICU of Bandar Abbas Hospital. Samples were identified using census sampling. Factors associated with NICU length of stay were investigated based on semiparametric Cox model and 4 parametric models including Weibull, exponential, log-logistic, and log-normal to determine the best fitted model. The data analysis was conducted using R software. The significance level was set at 0.05. Results: The study findings suggest that breastfeeding, phototherapy, acute renal failure, presence of mechanical ventilation, and availability of central venous catheter were commonly identified as factors associated with NICU length of stay in all 5 models (P<0.05). Parametric models showed better fitness than the Cox model in this study. Conclusion: Breastfeeding and availability of central venous catheter had protective effects against length of stay, whereas phototherapy, acute renal failure, and mechanical ventilation increased length of stay in NICU. Therefore, the identification of factors associated with NICU length of stay can help establish effective interventions aimed at decreasing the length of stay among infants.

FE model of electrical resistivity survey for mixed ground prediction ahead of a TBM tunnel face

  • Kang, Minkyu;Kim, Soojin;Lee, JunHo;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.301-310
    • /
    • 2022
  • Accurate prediction of mixed ground conditions ahead of a tunnel face is of vital importance for safe excavation using tunnel boring machines (TBMs). Previous studies have primarily focused on electrical resistivity surveys from the ground surface for geotechnical investigation. In this study, an FE (finite element) numerical model was developed to simulate electrical resistivity surveys for the prediction of risky mixed ground conditions in front of a tunnel face. The proposed FE model is validated by comparing with the apparent electrical resistivity values obtained from the analytical solution corresponding to a vertical fault on the ground surface (i.e., a simplified model). A series of parametric studies was performed with the FE model to analyze the effect of geological and sensor geometric conditions on the electrical resistivity survey. The parametric study revealed that the interface slope between two different ground formations affects the electrical resistivity measurements during TBM excavation. In addition, a large difference in electrical resistivity between two different ground formations represented the dramatic effect of the mixed ground conditions on the electrical resistivity values. The parametric studies of the electrode array showed that the proper selection of the electrode spacing and the location of the electrode array on the tunnel face of TBM is very important. Thus, it is concluded that the developed FE numerical model can successfully predict the presence of a mixed ground zone, which enables optimal management of potential risks.

Audio Signal Processing using Parametric Array with KZK Model (KZK 모델을 이용한 파라메트릭 어레이 음향 신호 처리)

  • Lee, Chong-Hyun;Samuel, Mano;Lee, Jea-Il;Kim, Won-Ho;Bae, Jin-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.139-146
    • /
    • 2009
  • Parametric array for audio applications is analyzed by numerical modeling and analytical approximation. The nonlinear wave equations are used to provide design guidelines for the audio parametric array. A time domain finite difference code that accurately solves the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is used to predict the response of the parametric array. The time domain code relates the source size and the carrier frequency to the audible signal response including the output level and beamwidth to considering the implementation issues for audio applications of the parametric array, the emphasis is given to the frequency response and distortion. We use the time domain code to find out the optimal parameters that will help produce the parametric array with highest achievable output in terms of the average power within the demodulated signal. Parameters such as primary input frequency, audio source radius and the modulation method are given utmost importance. The output effect of those parameters are demonstrated through the numerical simulation.

  • PDF

Parametric morphing of subject-specific NURBS models for Human Proximal Femurs Subject to Femoral Functions (해부학적 기능을 고려한 환자맞춤형 근위대퇴골 모델의 파라메트릭 변형 방안)

  • Park, Byoung-Keon;Wook, Chae-Jae;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.458-466
    • /
    • 2011
  • The morphology of a bone is closely associated with its biomechanical response. Thus, much research has been focused on analyzing the effects of variation of bone morphology with subject-specific models. Subject-specific models, which are generally achieved from 3D imaging devices like CT and MRI, incorporate more of the detailed information that makes a model unique. Hence, it may predict individual responses more accurately. Despite these powerful characteristics, specific models are not easily parameterized to the extent possible with statistical models because of their morphologic complexities. Thus, it is still proven challenging to analyze morphologic variations of subject-specific models across changes due to aging or disease. The aim of this article is to propose a generic and robust parametric morphing method for a subject-specific bone structure. We demonstrate this by using the proposed method on a model of a human proximal femur. Automatic segmentation algorithms are also presented to parameterize the specific model efficiently. A total of 48 femur models were evaluated for defining morphing vector fields. Also, several anatomical and mechanical functions of femur were considered as morphing constraints, and the NURBS interpolating technique was applied in the method to guarantee the generality of our morphed results.

Semiparametric Approach to Logistic Model with Random Intercept (준모수적 방법을 이용한 랜덤 절편 로지스틱 모형 분석)

  • Kim, Mijeong
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1121-1131
    • /
    • 2015
  • Logistic models with a random intercept are useful to analyze longitudinal binary data. Traditionally, the random intercept of the logistic model is assumed to be parametric (such as normal distribution) and is also assumed to be independent to variables. Such assumptions are very strong and restricted for application to real data. Recently, Garcia and Ma (2015) derived semiparametric efficient estimators for logistic model with a random intercept without these assumptions. Their estimator shows the consistency where we do not assume any parametric form for the random intercept. In addition, the method is computationally simple. In this paper, we apply this method to analyze toenail infection data. We compare the semiparametric estimator with maximum likelihood estimator, penalized quasi-likelihood estimator and hierarchical generalized linear estimator.

A Study on The Parametric Design Method for Power Boat (파라메트릭 설계법에 의한 파워보트 설계를 위한 연구)

  • Jeong, Yo-Han;Yoo, Jae-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.182-188
    • /
    • 2012
  • The hull form design technique for high speed power boat based on the parametric design method is presented in this paper. While the design methods of conventional vessels that are currently in use have been well developed in various aspects from existing database. However, an easy and simple design program for high speed power boats needs to be provided for the relatively small boat builders who are in lack of experience and skilled manpower. This paper presents a parametric design technique which is aimed to provide an easier creation of a new model by inputting several parameters, such as angles and lengths, which correlate with hydrodynamics characteristic for high speed boats. The paper also introduces the prototype program developed to design power boat with parametric design technique.

Parametric design of 3D solid objects using orthographic views (삼면도를 이용한 3차원 물체의 Parametric design)

  • 김병인;김광수
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.208-218
    • /
    • 1994
  • 기계부품의 설계는 일반적으로 정면도, 평면도, 측면도로 구성되는 삼면도를 이용하여 이루어진다. 본 연구에서는 삼면도를 이용한 3차원 물체의 parametric design 방법을 제시한다. parametric design 기법을 구현하기 위 하여 인공지능기법을 이용하고, 삼면도로부터 입체를 생성하기 위하여는 기 하학적이고 단계적인 접근방법을 이용한다. 본 연구에서 제시한 방법은 삼면 도를 사용하여 설계하기 때문에 기존의 설계방법과 같을 뿐 아니라, 파라메 트릭 기능을 가지고 있어서 설계가 완성된 이후에 형상의 수정을 쉽게 할 수 있는 장점이 있다. 또한 기존의 2차원 도면을 입체모델(solid model)로 바 꾸어 줄 수 있는 기능도 수행할수 있다.

Parametric analysis and torsion design charts for axially restrained RC beams

  • Bernardo, Luis F.A.;Taborda, Catia S.B.;Gama, Jorge M.R.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.1-27
    • /
    • 2015
  • This article presents a theoretical parametric analysis on the ultimate torsional behaviour of axially restrained reinforced concrete (RC) beams. This analysis is performed by using a computing procedure based on a modification of the Variable Angle Truss Model. This computing procedure was previously developed to account for the influence of the longitudinal compressive stress state due to the axial restraint conditions provided by the connections of the beams to other structural members. The presented parametric study aims to check the influence of some important variable studies, namely: torsional reinforcement ratio, compressive concrete strength and axial restraint level. From the results of this parametric study, nonlinear regression analyses are performed and some design charts are proposed. Such charts allow to correct the resistance torque of RC beams (rectangular sections with small height to width ratios) to account for the favorable influence of the axial restraint.

Parametric roll of container ships in head waves

  • Moideen, Hisham;Falzarano, Jeffrey M.;Sharma, S.Abhilash
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.239-255
    • /
    • 2012
  • Analysis of ship parametric roll has generally been restricted to simple analytical models and sophisticated time domain simulations. Simple analytical models do not capture all the critical dynamics while time-domain simulations are often time consuming to implement. The model presented in this paper captures the essential dynamics of the system without over simplification. This work incorporates various important aspects of the system and assesses the significance of including or ignoring these aspects. Special consideration is given to the fact that a hull form asymmetric about the design waterline would not lead to a perfectly harmonic variation in metacentric height. Many of the previous works on parametric roll make the assumption of linearized and harmonic behaviour of the time-varying restoring arm or metacentric height. This assumption enables modelling the roll motion as a Mathieu equation. This paper provides a critical assessment of this assumption and suggests modelling the roll motion as a Hills equation. Also the effects of non-linear damping are included to evaluate its effect on the bounded parametric roll amplitude in a simplified manner.

6-Parametric factor model with long short-term memory

  • Choi, Janghoon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.521-536
    • /
    • 2021
  • As life expectancies increase continuously over the world, the accuracy of forecasting mortality is more and more important to maintain social systems in the aging era. Currently, the most popular model used is the Lee-Carter model but various studies have been conducted to improve this model with one of them being 6-parametric factor model (6-PFM) which is introduced in this paper. To this new model, long short-term memory (LSTM) and regularized LSTM are applied in addition to vector autoregression (VAR), which is a traditional time-series method. Forecasting accuracies of several models, including the LC model, 4-PFM, 5-PFM, and 3 6-PFM's, are compared by using the U.S. and Korea life-tables. The results show that 6-PFM forecasts better than the other models (LC model, 4-PFM, and 5-PFM). Among the three 6-PFMs studied, regularized LSTM performs better than the other two methods for most of the tests.