• Title/Summary/Keyword: Parametric Data

Search Result 1,303, Processing Time 0.036 seconds

Parametric Empirical Bayes Estimation of A Constant Hazard with Right Censored Data

  • Mashayekhi, Mostafa
    • International Journal of Reliability and Applications
    • /
    • v.2 no.1
    • /
    • pp.49-56
    • /
    • 2001
  • In this paper we consider empirical Bayes estimation of the hazard rate and survival probabilities with right censored data under the assumption that the hazard function is constant over the period of observation and the prior distribution is gamma. We provide an estimator of the first derivative of the prior moment generating function that converges at each point to the true value in $L_2$ and use it to obtain, easy to compute, asymptotically optimal estimators under the squared error loss function.

  • PDF

Practical statistics in pain research

  • Kim, Tae Kyun
    • The Korean Journal of Pain
    • /
    • v.30 no.4
    • /
    • pp.243-249
    • /
    • 2017
  • Pain is subjective, while statistics related to pain research are objective. This review was written to help researchers involved in pain research make statistical decisions. The main issues are related with the level of scales that are often used in pain research, the choice of statistical methods between parametric or nonparametric statistics, and problems which arise from repeated measurements. In the field of pain research, parametric statistics used to be applied in an erroneous way. This is closely related with the scales of data and repeated measurements. The level of scales includes nominal, ordinal, interval, and ratio scales. The level of scales affects the choice of statistics between parametric or non-parametric methods. In the field of pain research, the most frequently used pain assessment scale is the ordinal scale, which would include the visual analogue scale (VAS). There used to be another view, however, which considered the VAS to be an interval or ratio scale, so that the usage of parametric statistics would be accepted practically in some cases. Repeated measurements of the same subjects always complicates statistics. It means that measurements inevitably have correlations between each other, and would preclude the application of one-way ANOVA in which independence between the measurements is necessary. Repeated measures of ANOVA (RMANOVA), however, would permit the comparison between the correlated measurements as long as the condition of sphericity assumption is satisfied. Conclusively, parametric statistical methods should be used only when the assumptions of parametric statistics, such as normality and sphericity, are established.

A Toolpath Generation for CNC Machining of Free-form Surfaces (자유 곡면의 CNC 가공을 위한 가공경로의 생성)

  • Seong, Wan;Choi, Chong-Ho;Song, O-Sok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.129-137
    • /
    • 1999
  • A parametric curve interpolator has been proposed for machining curves instead of a linear interpolator in which curves are approximated by a set of line segment. The parametric curve interpolator is superior to linear interpolator in machining time and contour error and generate exact position commands directly from curve equations. In this paper, a new toolpath generation method is proposed based on the parametric curve interpolator. This method retains all the benefits of parametric curve interpolator and can bound the scallop height within a specified value. By interpolating curves and surfaces directly from the mathematical equations, the amount of data from CAD/CAM system to CNC controller can be significantly reduced. The proposed method was implemented on a CNC controller and was confirmed to give a better result than the other existing method.

  • PDF

A Study on the BIM-based Design for the Elements of Wooden Structure of Korean Traditional Buildings Through a Parametric Design Methodology (파라메트릭 디자인 방법론을 활용한 한옥 목구조부재의 BIM 설계 프로세스 연구)

  • Park, Jung-Dae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.2
    • /
    • pp.104-113
    • /
    • 2011
  • With the rising social interest in the sustainable life, demands are growing for Hanok, as a viable alternative to modernized architecture of Western origin. However, even Hanok is gaining popularity among the general public, its design and construction are still a minor practice. Aiming to build an information system of Hanok, this research proposes a new design process for traditional architecture, utilizing a parametric design methodology. This process, based on the understanding of tectonic joints and spatial composition of our traditional architecture, defines a parametric relationship among the structural elements that compose Hanok. The research uses Gehry Technologies' Digital Project and Autodesk Revit Architecture to apply a concurrent parametric design methodology, approaching the project in both bottom-up and top-down to present a new design process for Hanok elements.

A Study of Parametric Curve Interpolator in CAD/CAM Ststem (CAD/CAM 시스템에서 매개변수형 곡선본간기에 관한 연구)

  • 김희송
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.47-52
    • /
    • 1996
  • The interpolator is very important in CNC machines. This study proposed a parametric curve interpolator(PCI) which can be used for machining any sculptured surface represented in a parametric form and generates commands for tool motion between CAD data points according to given accuracy demands. The proposed interpolator is superior to the existing linear interpolator in accuracy, feed rate and acceleration continuity. Moreover in comparison to the recently developed cubic spline interpolator, the PCI has the capability of handling higher order parametric curves and also ensures precise tracking in the velocity domain. Results from real time simulations and experiments on open architecture CNC machines equipped with the proposed interpolator are presented to show its practical capagility. It is believed that the combination of the proposed interpolator and the open architecture machine controller further advances the area of command generation which is an important aspect of CAD/CAM.

  • PDF

A NEW NON-PARAMETRIC APPROACH TO DETERMINE PROPER MOTIONS OF STAR CLUSTERS

  • PRIYATIKANTO, RHOROM;ARIFYANTO, MOCHAMAD IKBAL
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.271-273
    • /
    • 2015
  • The bulk motion of star clusters can be determined after careful membership analysis using parametric or non-parametric approaches. This study aims to implement non-parametric membership analysis based on Binned Kernel Density Estimators which takes into account measurements errors (simply called BKDE-e) to determine the average proper motion of each cluster. This method is applied to 178 selected star clusters with angular diameters less than 20 arcminutes. Proper motion data from UCAC4 are used for membership determination. Non-parametric analysis using BKDE-e successfully determined the average proper motion of 129 clusters, with good accuracy. Compared to COCD and NCOVOCC, there are 79 clusters with less than $3{\sigma}$ difference. Moreover, we are able to analyse the distribution of the member stars in vector point diagrams which is not always a normal distribution.

Linearized Methods for Quantitative Analysis and Parametric Mapping of Brain PET (뇌 PET 영상 정량화 및 파라메터영상 구성을 위한 선형분석기법)

  • Kim, Su-Jin;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.78-84
    • /
    • 2007
  • Quantitative analysis of dynamic brain PET data using a tracer kinetic modeling has played important roles in the investigation of functional and molecular basis of various brain diseases. Parametric imaging of the kinetic parameters (voxel-wise representation of the estimated parameters) has several advantages over the conventional approaches using region of interest (ROI). Therefore, several strategies have been suggested to generate the parametric images with a minimal bias and variability in the parameter estimation. In this paper, we will review the several approaches for parametric imaging with linearized methods which include graphical analysis and mulilinear regression analysis.

A simulation comparison on the analysing methods of Likert type data (모의실험에 의한 리커트형 설문분석 방법의 비교)

  • Kim, Hyun Chul;Choi, Seung Kyoung;Choi, Dong Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.373-380
    • /
    • 2016
  • Even though Likert type data is ordinal scale, many researchers who regard Likert type data as interval scale adapt as parametric methods. In this research, simulations have been used to find out a proper analysis of Likert type data. The locations and response distributions of five point Likert type data samples having diverse distribution have been evaluated. In estimating samples' locations, we considered parametric method and non-parametric method, which are t-test and Mann-Whitney test respectively. In addition, to test response distribution, we employed Chi-squared test and Kolmogorov-Smirnov test. In this study, we assessed the performance of the four aforementioned methods by comparing Type I error ratio and statistical power.

Reference Intervals from Hospital-Based Data for Hematologic and Serum Chemistry Values in Dogs (병원자료에 근거한 혈액 및 혈액화학 검사항목의 참고구간 설정)

  • Kwon, Young-Wook;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.27 no.1
    • /
    • pp.66-70
    • /
    • 2010
  • Reference interval is critical for interpreting laboratory results, monitoring response to therapy and predicting the prognosis of the patients in clinical settings. The aim of the present study was to update established reference intervals for routine hematologic and serum chemistry values for a population of clinically healthy dogs (range, 1-8 years) seen in an animal hospital. Blood was obtained by venipuncture while animals were physically restrained, and samples were analyzed for 9 chemistries on MS9-5H (Melot Schloesing Lab, France) and 6 hematology on Vet Test 8008 (IDEXX, USA). Data from 105 dogs (52 males and 53 females) for hematology and 113 dogs (37 males and 76 females) for chemistry were used to determine reference intervals using the parametric, nonparametric and bootstrap methods. Prior to analysis, all parameters were tested for normal distribution using Anderson-Darling criterion. Of the 9 biochemical analytes, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, creatinine, total protein, and glucose concentrations did not fit normal distribution for both original and transformed data. All but eosinophil count satisfied normal distribution for either original or transformed data. Parametric method can be used for original cholesterol concentrations, RBC, WBC, and neutrophil counts. This technique can also be used for power-transformed values of blood urea nitrogen concentrations and for logarithm of lymphocyte and monocyte counts. Non-parametric or bootstrap method was the preferred choice for the remaining 7 biochemical parameters and eosinophil count as they did not follow normal distributions. All three statistical techniques performed in similar reference intervals. When establishing reference intervals for clinical laboratory data, it is essential to assess the distribution of the original data to increase the accuracy of the interval, and non-parametric or bootstrap methods are of alternative for the data that do not fit normal distribution.

Factors Clustering Approach to Parametric Cost Estimates And OLAP Driver

  • JaeHo, Cho;BoSik, Son;JaeYoul, Chun
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.707-716
    • /
    • 2009
  • The role of cost modeller is to facilitate the design process by systematic application of cost factors so as to maintain a sensible and economic relationship between cost, quantity, utility and appearance which thus helps in achieving the client's requirements within an agreed budget. There are a number of research on cost estimates in the early design stage based on the improvement of accuracy or impact factors. It is common knowledge that cost estimates are undertaken progressively throughout the design stage and make use of the information that is available at each phase, through the related research up to now. In addition, Cost estimates in the early design stage shall analyze the information under the various kinds of precondition before reaching the more developed design because a design can be modified and changed in all process depending on clients' requirements. Parametric cost estimating models have been adopted to support decision making in a changeable environment, in the early design stage. These models are using a similar instance or a pattern of historical case to be constituted in project information, geographic design features, relevant data to quantity or cost, etc. OLAP technique analyzes a subject data by multi-dimensional points of view; it supports query, analysis, comparison of required information by diverse queries. OLAP's data structure matches well with multiview-analysis framework. Accordingly, this study implements multi-dimensional information system for case based quantity data related to design information that is utilizing OLAP's technology, and then analyzes impact factors of quantity by the design criteria or parameter of the same meaning. On the basis of given factors examined above, this study will generate the rules on quantity measure and produce resemblance class using clustering of data mining. These sorts of knowledge-base consist of a set of classified data as group patterns, of which will be appropriate stand on the parametric cost estimating method.

  • PDF