• 제목/요약/키워드: Parametric Algorithm

검색결과 456건 처리시간 0.029초

파노라믹 영상 모델에 근거한 파라메트릭 비디오 압축 (Parametric Video Compression Based on Panoramic Image Modeling)

  • 심동규
    • 대한전자공학회논문지SP
    • /
    • 제43권4호
    • /
    • pp.96-107
    • /
    • 2006
  • 본 논문에서는 파노라믹 영상 모델링에 근거한 비디오 압축 전송 방법을 제안한다. 제안한 방법은 회전 카메라에 입력되는 영상에서 배경 영상과 움직이는 물체로 분리하고 차영상을 추출하여 압축/전송하는 방법을 사용한다. 제안한 비디오 압축 시스템은 초기화 과정에서 전송된 파노라믹 영상으로부터 배경영상을 합성할 수 있도록 파라메터 만을 전송하게 된다. 본 논문 에서는 정확한 배경 합성을 위한 정확한 카메라 모델링 기반 파노라믹 영상 합성법을 제시하며, 이를 바탕으로 비디오 압축에 응용하는 방법을 제안하였다. 제안한 비디오 압축방법에 의하여 기존의 JPEG-2000이나 MPEG-4 비디오 압축 방법에 비하여 PSNR 관점에서 $2{\sim}4dB$ 효율적임을 보였다.

제품설계 신뢰성 제고를 위한 LCC의 알고리즘 연구 (A Study on Algorithm of Life Cycle Cost for Improving Reliability in Product Design)

  • 김동관;정수일
    • 대한안전경영과학회지
    • /
    • 제7권5호
    • /
    • pp.155-174
    • /
    • 2005
  • Parametric life-cycle cost(LCC) models have been integrated with traditional design tools, and used in prior work to demonstrate the rapid solution of holistic, analytical tradeoffs between detailed design variations. During early designs stages there may be competing concepts with dramatic differences. Additionally, detailed information is scarce, and decisions must be models. for a diverse range of concepts, and the lack of detailed information make the integration make the integration of traditional LCC models impractical. This paper explores an approximate method for providing preliminary life-cycle cost. Learning algorithms trained using the known characteristics of existing products be approximated quickly during conceptual design without the overhead of defining new models. Artificial neural networks are trained to generalize on product attributes and life cycle cost date from pre-existing LCC studies. The Product attribute data to quickly obtain and LCC for a new and then an application is provided. In additions, the statistical method, called regression analysis, is suggested to predict the LCC. Tests have shown it is possible to predict the life cycle cost, and the comparison results between a learning LCC model and a regression analysis is also shown

Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization

  • Wang, Xinjing;Song, Baowei;Wang, Peng;Sun, Chunya
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권6호
    • /
    • pp.730-740
    • /
    • 2018
  • Hydrofoil is the direct component to generate thrust for underwater glider. It is significant to improve propulsion efficiency of hydrofoil. This study optimizes the shape of a hydrofoil using Free-Form Deformation (FFD) parametric approach and Surrogate-based Optimization (SBO) algorithm. FFD approach performs a volume outside the hydrofoil and the position changes of control points in the volume parameterize hydrofoil's geometric shape. SBO with adaptive parallel sampling method is regarded as a promising approach for CFD-based optimization. Combination of existing sampling methods is being widely used recently. This paper chooses several well-known methods for combination. Investigations are implemented to figure out how many and which methods should be included and the best combination strategy is provided. As the hydrofoil can be stretched from airfoil, the optimizations are carried out on a 2D airfoil and a 3D hydrofoil, respectively. The lift-drag ratios are compared among optimized and original hydrofoils. Results show that both lift-drag-ratios of optimized hydrofoils improve more than 90%. Besides, this paper preliminarily explores the optimization of hydrofoil with root-tip-ratio. Results show that optimizing 3D hydrofoil directly achieves slightly better results than 2D airfoil.

Stochastic simulation models with non-parametric approaches: Case study for the Colorado River basin

  • 이태삼;호세 살라스;제임스 프레리;도널드 프리버트;테리 플립
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.283-287
    • /
    • 2010
  • Stochastic simulation of hydrologic data has been widely developed for several decades. However, despite the several advances made in literature still a number of limitations and problems remain. In the current study, some stochastic simulation approaches tackling some of the existing problems are discussed. The presented models are based on nonparametric techniques such as block bootstrapping, and K-nearest neighbor resampling (KNNR), and kernel density estimate (KDE). Three different types of the presented stochastic simulation models are (1) Pilot Gamma Kernel estimate with KNNR (a single site case) and (2) Enhanced Nonparametric Disaggregation with Genetic Algorithm (a disaggregation case). We applied these models to one of the most challenging and critical river basins in USA, the Colorado River. These models are embedded into the hydrological software package, Pros and cons of the models compared with existing models are presented through basic statistics and drought and storage-related statistics.

  • PDF

A New Approach to the Design of An Adaptive Fuzzy Sliding Mode Controller

  • Lakhekar, Girish Vithalrao
    • International Journal of Ocean System Engineering
    • /
    • 제3권2호
    • /
    • pp.50-60
    • /
    • 2013
  • This paper presents a novel approach to the design of an adaptive fuzzy sliding mode controller for depth control of an autonomous underwater vehicle (AUV). So far, AUV's dynamics are highly nonlinear and the hydrodynamic coefficients of the vehicles are difficult to estimate, because of the variations of these coefficients with different operating conditions. These kinds of difficulties cause modeling inaccuracies of AUV's dynamics. Hence, we propose an adaptive fuzzy sliding mode control with novel fuzzy adaptation technique for regulating vertical positioning in presence of parametric uncertainty and disturbances. In this approach, two fuzzy approximator are employed in such a way that slope of the linear sliding surface is updated by first fuzzy approximator, to shape tracking error dynamics in the sliding regime, while second fuzzy approximator change the supports of the output fuzzy membership function in the defuzzification inference module of fuzzy sliding mode control (FSMC) algorithm. Simulation results shows that, the reaching time and tracking error in the approaching phase can be significantly reduced with chattering problem can also be eliminated. The effectiveness of proposed control strategy and its advantages are indicated in comparison with conventional sliding mode control FSMC technique.

고-기상 독성오염물질 단기 대기확산에 관한 수치해석적 연구 : 화학종, 온도, 상대속도 (A Numerical Study on the Short-term Dispersion of Toxic Gaseous and Solid Pollutant in an Open Atmosphere : Chemical Species, Temperature, Relative Velocity)

  • 나혜령;이은주;장동순;서영태
    • 한국안전학회지
    • /
    • 제10권3호
    • /
    • pp.68-80
    • /
    • 1995
  • A series of parametric calculations have been performed in order to investigate the short-term and short-range plume and puff behavior of toxic gaseous and solid pollutant dispersion in an open atmosphere. The simulation is made by the use of the computer program developed by this laboratory, in which a control-volume based finite-difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling appeared In Wavier-Stokes equation. The Reynolds stresses are solved by the standard two-equation k-$\varepsilon$ model modified for buoyancy together with the RNG(Renormalization Group) k-$\varepsilon$ model. The major parameters considered in this calculation are pollutant gas density and temperature, the relative velocity of pollutants to that of the surrounding atmospheric air, and particulate size and density together with the height released. The flow field is typically characterized by the formation of a strong recirculation region for the case of the low density gases such as $CH_4$ and air due to the strong buoyancy, while the flow is simply declining pattern toward the downstream ground for the case of heavy molecule like the $CH_2C1_2$and $CCl_4$, even for the high temperature, $200^{\circ}C$. The effect of gas temperature and velocity on the flow field together with the particle trajectory are presented and discussed in detail. In general, the results are physically acceptable and consistent.

  • PDF

퍼지 클러스터링을 이용한 심전도 신호의 라벨링에 관한 연구 (A Study on Labeling of ECG Signal using Fuzzy Clustering)

  • 공인욱;이정환;이상학;최석준;이명호
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.118-121
    • /
    • 1996
  • This paper describes ECG signal labeling based on Fuzzy clustering, which is necessary at automated ECG diagnosis. The NPPA(Non parametric partitioning algorithm) compares the correlations of wave forms, which tends to recognize the same wave forms as different when the wave forms have a little morphological variation. We propose to apply Fuzzy clustering to ECG QRS Complex labeling, which prevents the errors to mistake by using If-then comparision. The process is divided into two parts. The first part is a parameters extraction process from ECG signal, which is composed of filtering, QRS detection by mapping to a phase space by time delay coordinates and generation of characteristic vectors. The second is fuzzy clustering by FCM(Fuzzy c-means), which is composed of a clustering, an assessment of cluster validity and labeling.

  • PDF

다중 목적 입자 군집 최적화 알고리즘 이용한 방사형 기저 함수 기반 다항식 신경회로망 구조 설계 (Structural Design of Radial Basis Function-based Polynomial Neural Networks by Using Multiobjective Particle Swarm Optimization)

  • 김욱동;오성권
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.135-142
    • /
    • 2012
  • In this paper, we proposed a new architecture called radial basis function-based polynomial neural networks classifier that consists of heterogeneous neural networks such as radial basis function neural networks and polynomial neural networks. The underlying architecture of the proposed model equals to polynomial neural networks(PNNs) while polynomial neurons in PNNs are composed of Fuzzy-c means-based radial basis function neural networks(FCM-based RBFNNs) instead of the conventional polynomial function. We consider PNNs to find the optimal local models and use RBFNNs to cover the high dimensionality problems. Also, in the hidden layer of RBFNNs, FCM algorithm is used to produce some clusters based on the similarity of given dataset. The proposed model depends on some parameters such as the number of input variables in PNNs, the number of clusters and fuzzification coefficient in FCM and polynomial type in RBFNNs. A multiobjective particle swarm optimization using crowding distance (MoPSO-CD) is exploited in order to carry out both structural and parametric optimization of the proposed networks. MoPSO is introduced for not only the performance of model but also complexity and interpretability. The usefulness of the proposed model as a classifier is evaluated with the aid of some benchmark datasets such as iris and liver.

Passive suppression of helicopter ground resonance instability by means of a strongly nonlinear absorber

  • Bergeot, Baptiste;Bellizzi, Sergio;Cochelin, Bruno
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.271-298
    • /
    • 2016
  • In this paper, we study a problem of passive suppression of helicopter Ground Resonance (GR) using a single degree freedom Nonlinear Energy Sink (NES), GR is a dynamic instability involving the coupling of the blades motion in the rotational plane (i.e. the lag motion) and the helicopter fuselage motion. A reduced linear system reproducing GR instability is used. It is obtained using successively Coleman transformation and binormal transformation. The analysis of the steadystate responses of this model is performed when a NES is attached on the helicopter fuselage. The NES involves an essential cubic restoring force and a linear damping force. The analysis is achieved applying complexification-averaging method. The resulting slow-flow model is finally analyzed using multiple scale approach. Four steady-state responses corresponding to complete suppression, partial suppression through strongly modulated response, partial suppression through periodic response and no suppression of the GR are highlighted. An algorithm based on simple criterions is developed to predict these steady-state response regimes. Numerical simulations of the complete system confirm this analysis of the slow-flow dynamics. A parametric analysis of the influence of the NES damping coefficient and the rotor speed on the response regime is finally proposed.

Real-time estimation of break sizes during LOCA in nuclear power plants using NARX neural network

  • Saghafi, Mahdi;Ghofrani, Mohammad B.
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.702-708
    • /
    • 2019
  • This paper deals with break size estimation of loss of coolant accidents (LOCA) using a nonlinear autoregressive with exogenous inputs (NARX) neural network. Previous studies used static approaches, requiring time-integrated parameters and independent firing algorithms. NARX neural network is able to directly deal with time-dependent signals for dynamic estimation of break sizes in real-time. The case studied is a LOCA in the primary system of Bushehr nuclear power plant (NPP). In this study, number of hidden layers, neurons, feedbacks, inputs, and training duration of transients are selected by performing parametric studies to determine the network architecture with minimum error. The developed NARX neural network is trained by error back propagation algorithm with different break sizes, covering 5% -100% of main coolant pipeline area. This database of LOCA scenarios is developed using RELAP5 thermal-hydraulic code. The results are satisfactory and indicate feasibility of implementing NARX neural network for break size estimation in NPPs. It is able to find a general solution for break size estimation problem in real-time, using a limited number of training data sets. This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr NPP.