• 제목/요약/키워드: Parameters calculation

검색결과 1,502건 처리시간 0.025초

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives

  • Won, Tae-Hyun;Lee, Man-Hyung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권3호
    • /
    • pp.125-132
    • /
    • 2002
  • PMSMS (permanent magnet synchronous motors) are widely used in industrial applications and home appliances because of their high torque to inertia ratio, superior power density, and high efficiency. For high performance control, accurate informations about the rotor position is essential. Sensorless algorithms have lately been studied extensively due to the high cost of position sensors and their low reliability in harsh environments. A novel position sensorless speed control for PMSMs uses indirect flux estimation and is presented in this paper. Rotor position and angular velocity are estimated by the proposed indirect flux estimation. Linkage flux and magnetic field flux are calculated by the voltage equations and the measured phase current without any integration. Instead of linkage flux calculation with integral operation, indirect flux and differential magnetic field are used for the estimation of rotor position. A proper rejection technique fur current noise effect in the calculation of differential linkage flux is introduced. The proposed indirect flux detecting method is free from the integral rounding error and linkage flux drift problem, because differential linkage flux can be calculated without any integral operation. Furthermore, electrical parameters of the PMSM can be measured by the proposed TCM (time compression method) for soft starting and precise estimation of rotor position. The position estimator uses accurate electrical parameters that are obtained from the proposed TCM at starting strategy. In the operating region, a proper compensation method fur temperature effect can compensate fir the estimation error from the variation of electrical parameters. The proposed novel position sensorless speed control scheme is verified by the experimental results.

A quantitative methodology for evaluating the ship stability using the index for marine ship intact stability assessment model

  • IM, Nam-Kyun;CHOE, Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.246-259
    • /
    • 2021
  • IMO stability regulations include various stability parameters such as GM values. To assess the stability of the ships, we should check all stability parameters of the IMO requirements. However, since this process is complex, a more convenient way to evaluate stability performance is required. In this research, the index for marine ship intact stability assessment (IMSISA) model was developed to solve these problems. The IMSISA model consists of a stability index calculation module and a stability assessment module. In the stability index calculation module, ten stability parameters, including GM, were used to develop the stability index, which has the advantage of being able to quantify the ship stability. The stability assessment module uses the stability index value to determine the stability status of the ship and provides the captain with stability management guidelines. To verify the proposed model, the basic stability calculations were performed for two model ships in 32 loading situations. The proposed model was found to provide better performance in the stability assessment than the previous study. By applying the IMSISA model to the ships, the captain can assess the ship stability more quantitatively and efficiently.

Experimental study and analysis of design parameters for analysis of fluidelastic instability for steam generator tubing

  • Xiong Guangming;Zhu Yong;Long Teng;Tan Wei
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.109-118
    • /
    • 2023
  • In this paper, the evaluation method of fluidelastic instability (FEI) of newly designed steam generator tubing in pressurized water reactor (PWR) nuclear power plants is discussed. To obtain the parameters for prediction of the critical velocity of FEI for steam generator tubes, experimental research is carried out, and the design parameters are determined. Using CFD numerical simulation, the tube array scale of the model experiment is determined, and the experimental device is designed. In this paper, 7 groups of experiments with void fractions of 0% (water), 10%, 20%, 50%, 75%, 85% and 95% were carried out. The critical damping ration, fundamental frequency and critical velocity of FEI of tubes in flowing water were measured. Through calculation, the total mass and instability constant of the immersed tube are obtained. The critical damping ration measured in the experiment mainly included two-phase damping and viscous damping, which changed with the change in void fraction from 1.56% to 4.34%. This value can be used in the steam generator design described in this paper and is conservative. By introducing the multiplier of frequency and square root of total mass per unit length, it is found that the difference between the experimental results and the calculated results is less than 1%, which proves the rationality and feasibility of the calculation method of frequency and total mass per unit length in engineering design. Through calculation, the instability constant is greater than 4 when the void fraction is less than 75%, less than 4 when the void fraction exceeds 75% and only 3.04 when the void fraction is 95%.

고압탱크에서 수소가스의 압축성 인자에 관한 이론적 연구 (A Theoretical Study on the Compressibility Factor of Hydrogen Gas in the High Pressure Tank)

  • 이길강;허항;이길초;권정태
    • 한국수소및신에너지학회논문집
    • /
    • 제34권2호
    • /
    • pp.162-168
    • /
    • 2023
  • The fast refueling process of compressed hydrogen has an important impact on the filling efficiency and safety. With the development and use of hydrogen energy, the demand for precision measurement of filling hydrogen thermodynamic parameters is also increasing. In this paper, the compressibility factor calculation model of high-pressure hydrogen gas was studied, and the basic equation of state and thermo-physical parameters were calculated. The hydrogen density data provided by the National Institute of Standards and Technology was compared with the calculation results of each model. Results show that at a pressure of 0.1-100 MPa and a temperature of 233-363 K, the calculation accuracy of the Zheng-Li equation of state was less than 0.5%. In the range of 0.1-70 MPa, the accuracy of Redich-Kwong equation is less than 3%. The hydrogen pressure more influences on the compressibility factor than the hydrogen temperature does. Using the Zheng-Li equation of state to calculate the compressibility factor of on-board high pressure hydrogen can obtain high accuracy.

Dose Calculation of Photon Beam with Wedge Filter for Radiation Therapy Planning System

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Lee, Hyoung-Koo;Choe, Bo-Young
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2003년도 제27회 추계학술대회
    • /
    • pp.41-41
    • /
    • 2003
  • Purpose: Even if the wedge filter is widely used for the radiation therapy to modify the photon beam intensity, the wedged photon beam dose calculation is not so easy. Radiation therapy planning systems (RTPS) have been used the empirical or semi-analytical methods such as attenuation method using wedge filter parameters or wedge filter factor obtained from measurement. However, these methods can cause serious error in penumbra region as well as in edge region. In this study, we propose the dose calculation algorithm for wedged field to minimize the error especially in the outer beam region. Materials and Method: Modified intensity by wedge filter was calculated using tissue-maximum ratio (TMR) and scatter-maximum ratio (SMR) of wedged field. Profiles of wedged and non-wedged direction was also used. The result of new dose calculation was compared with measurement and the result from attenuation method. Results: Proposed algorithm showed the good agreement with measurement in the high dose-gradient region as well as in the inner beam region. The error was decreased comparing to attenuation method. Conclusion: Although necessary beam data for the RTPS commissioning was increased, new algorithm would guarantee the improved dose calculation accuracy for wedged field. In future, this algorithm could be adopted in RTPS.

  • PDF

Deflection calculation method on GFRP-concrete-steel composite beam

  • Tong, Zhaojie;Song, Xiaodong;Huang, Qiao
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.595-606
    • /
    • 2018
  • A calculation method was presented to calculate the deflection of GFRP-concrete-steel beams with full or partial shear connections. First, the sectional analysis method was improved by considering concrete nonlinearity and shear connection stiffness variation along the beam direction. Then the equivalent slip strain was used to take into consideration of variable cross-sections. Experiments and nonlinear finite element analysis were performed to validate the calculation method. The experimental results showed the deflection of composite beams could be accurately predicted by using the theoretical model or the finite element simulation. Furthermore, more finite element models were established to verify the accuracy of the theoretical model, which included different GFRP plates and different numbers of shear connectors. The theoretical results agreed well with the numerical results. In addition, parametric studies using theoretical method were also performed to find out the effect of parameters on the deflection. Based on the parametric studies, a simplified calculation formula of GFRP-concrete-steel composite beam was exhibited. In general, the calculation method could provide a more accurate theoretical result without complex finite element simulation, and serve for the further study of continuous GFRP-concrete-steel composite beams.

Monte Carlo shielding evaluation of a CSNS Multi-Physics instrument

  • Liang, Tairan;Shen, Fei;Yin, Wen;Xu, Juping;Yu, Quanzhi;Liang, Tianjiao
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1998-2004
    • /
    • 2019
  • The Multi-Physics (MP) instrument is one of 20 neutron spectrometers planned in the China Spallation Neutron Source (CSNS). This paper presents a shielding calculation for the MP instrument using Monte Carlo codes MCNPX and FLUKA. First, the neutrons that escape from the CSNS decoupled water moderator and are delivered to the beam line of the MP instrument are calculated to use as the source term of the shielding calculation. Then, to validate the calculation method based on multiple variance reduction techniques, a cross check between MCNPX and FLUKA codes is performed by comparing the calculation results of the dose rate distribution on a simplified beam line model. Finally, a complete geometry model of the MP instrument is set up, and the primary parameters for the shielding design are obtained according to the calculated dose rate map considering different worst-case scenarios.

High accurate three-dimensional neutron noise simulator based on GFEM with unstructured hexahedral elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1479-1486
    • /
    • 2019
  • The purpose of the present study is to develop the 3D static and noise simulator based on Galerkin Finite Element Method (GFEM) using the unstructured hexahedral elements. The 3D, 2G neutron diffusion and noise equations are discretized using the unstructured hexahedral by considering the linear approximation of the shape function in each element. The validation of the static calculation is performed via comparison between calculated results and reported data for the VVER-1000 benchmark problem. A sensitivity analysis of the calculation to the element type (unstructured hexahedral or tetrahedron elements) is done. Finally, the neutron noise calculation is performed for the neutron noise source of type of variable strength using the Green function technique. It is shown that the error reduction in the static calculation is considerable when the unstructured tetrahedron elements are replaced with the hexahedral ones. Since the neutron flux distribution and neutron multiplication factor are appeared in the neutron noise equation, the more accurate calculation of these parameters leads to obtaining the neutron noise distribution with high accuracy. The investigation of the changes of the neutron noise distribution in axial direction of the reactor core shows that the 3D neutron noise analysis is required instead of 2D.

컴퓨터 시물레이션 에 의한 太陽熱 集熱器 의 最適設計 에 관한 硏究 (The Analysis of Optimum Design Parameters for a Flat-Plate solar Collector Through Computer Simulation)

  • 조수원;김종보
    • 대한기계학회논문집
    • /
    • 제8권1호
    • /
    • pp.1-9
    • /
    • 1984
  • In the utilization of solar energy most often a flat solar collector is used for solar heating, system. Since solar energy is absorbed through this solar collector, it is considered to be a most important part in the whole solar heating system. The purpose of the present investigation is to evaluate the influence of varying design parameters for thermal performances of flat-plate solar collector. By analysing these parameters, optimum design of solar collector would become possible. Specification of the existing solar collector are utilized in calculation as a starting point. Analysis is carried out numerically for "Unit Solar Collector" which is composed of fin and tube. Among design parameters. such parameters as mass flow rate per unit area, tube spacing and fin thickness are selected as variables in the computer simulation model. Results are presented for thermal performances of flat-plate solar collector for each important design parameters, so that predictions become possible through numerical analysis without performing experiments whenever it is required. required.

Research on Robust Stability Analysis and Worst Case Identification Methods for Parameters Uncertain Missiles

  • Hou, Zhenqian;Liang, Xiaogeng;Wang, Wenzheng
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.63-73
    • /
    • 2014
  • For robust stability analysis of parameters uncertainty missiles, the traditional frequency domain method can only analyze each respective channel at several interval points within uncertain parameter space. Discontinuous calculation and couplings between channels will lead to inaccurate analysis results. A method based on the ${\nu}$-gap metric is proposed, which is able to comprehensively evaluate the robust stability of missiles with uncertain parameters; and then a genetic-simulated annealing hybrid optimization algorithm, which has global and local searching ability, is used to search for a parameters combination that leads to the worst stability within the space of uncertain parameters. Finally, the proposed method is used to analyze the robust stability of a re-entry missile with uncertain parameters; the results verify the feasibility and accuracy of the method.