• Title/Summary/Keyword: Parameters Optimization

Search Result 3,253, Processing Time 0.031 seconds

Optimization of the Satellite Mission Scheduling Using Genetic Algorithms (유전 알고리즘을 이용한 위성 임무 스케줄링 최적화)

  • Han, Soon-Mi;Baek, Seung-Woo;Jo, Seon-Yeong;Cho, Kyeum-Rae;Lee, Dae-Woo;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1163-1170
    • /
    • 2008
  • A mission scheduling optimization algorithm according to the purpose of satellite operations is developed using genetic algorithm. Satellite mission scheduling is making a timetable of missions which are slated to be performed. It is essential to make an optimized timetable considering related conditions and parameters for effective mission performance. Thus, as important criterions and parameters related to scheduling vary with the purpose of satellite operation, those factors should be fully considered and reflected when the satellite mission scheduling algorithm is developed. The developed algorithm in this study is implemented and verified through a comprehensive simulation study. As a result, it is shown that the algorithm can be applied into various type of the satellite mission operations.

Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (II): Application of Preference Ordering (다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(II): 선호적 순서화의 적용)

  • Koo, Bo-Young;Kim, Tae-Soon;Jung, Il-Won;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.687-696
    • /
    • 2007
  • Preference ordering approach is applied to optimize the parameters of Tank model using multi-objective genetic algorithm (MOGA). As more than three multi-objective functions are used in MOGA, too many non-dominated optimal solutions would be obtained thus the stakeholder hardly find the best optimal solution. In order to overcome this shortcomings of MOGA, preference ordering method is employed. The number of multi-objective functions in this study is 4 and a single Pareto-optimal solution, which is 2nd order efficiency and 3 degrees preference ordering, is chosen as the most preferred optimal solution. The comparison results among those from Powell method and SGA (simple genetic algorithm), which are single-objective function optimization, and NSGA-II, multi-objective optimization, show that the result from NSGA-II could be reasonalby accepted since the performance of NSGA-II is not deteriorated even though it is applied to the verification period which is totally different from the calibration period for parameter estimation.

The Discrete Optimum Design of Steel Frame Considering Material and Geometrical Nonlinearties (재료 및 기하학적 비선형을 고려한 브레이싱된 강뼈대구조물의 최적설계)

  • Chang, Chun Ho;Park, Moon Ho;Lee, Hae Kyoung;Park, Soon Eung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.317-328
    • /
    • 2000
  • The objective of the research is to develop an algorithm for the optimum design of two-dimensional braced steel frames using an advanced analysis, which considers both material and geometric nonlinearties. Since both nonlinearties are considered in analysis process, Optimum design algorithm which does not require to calculate K-factor is presented. A multi-level discrete optimization technique with two parameters that uses the information of structural system and separate member has been developed. The structural analysis is performed by the relined plastic-hinge method which is based on zero-length plastic hinge theory. Optimization problem are formulated by AISC-LRFD code. The feasibility, validity and efficiency of the developed algorithm is demonstrated by the results of the braced steel frame.

  • PDF

Comparison of Partial Least Squares and Support Vector Machine for the Autoignition Temperature Prediction of Organic Compounds (유기물의 자연발화점 예측을 위한 부분최소자승법과 SVM의 비교)

  • Lee, Gi-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • The autoignition temperature is one of the most important physical properties used to determine the flammability characteristics of chemical substances. Despite the needs of the experimental autoignition temperature data for the design of chemical plants, it is not easy to get the data. This study have built and compared partial least squares (PLS) and support vector machine (SVM) models to predict the autoignition temperatures of 503 organic compounds out of DIPPR 801. As the independent variables of the models, 59 functional groups were chosen based on the group contribution method. The prediction errors calculated from cross-validation were employed to determine the optimal parameters of two models. And, particle swarm optimization was used to get three parameters of SVM model. The PLS and SVM results of the average absolute errors for the whole data range from 58.59K and 29.11K, respectively, indicating that the predictive ability of the SVM is much superior than PLS.

An integrated design approach for Light Guide Panel(LGP) of Back Light Unit(BLU) to improve the Optical Performance of Liquid Crystal Display(LCD) (LCD 제품의 광학 성능 향상을 위한 백라이트 유닛용 도광판의 최적설계)

  • Lee, Gab-Seong;Jeong, Jae-Ho;Yoon, Sang-Joon;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1048-1052
    • /
    • 2008
  • Difficulties in developing process of Liquid Crystal Display(LCD) products such as frequent design modifications, various design requirements, and short-term development period bring on the need of integrated design approach that is efficient and easy to handle. Back Light Unit(BLU) of the LCD, which drastically affects the optical performance of LCD products, is divided into in-coupling part and out-coupling part. Serration of the in-coupling part flattens the light received from point light sources and dot pattern of the out-coupling part regularizes the light sent to screen. Therefore, the optical performance of a LCD product is largely influenced by the shape of serration and the arrangement of dot pattern. In this research, a new design approach which enables to improve the optical performance of LCD products and overcome the prementioned difficulties in developing process of LCD products is proposed. The shape of serration is parameterized to 3 parameters and out-coupling part is partitioned into 10 partitions to apply the optimization technique to this problem. 3 parameters for the shape of serration and densities of 10 partitions are used as design variables in the design optimization. Optical simulation tool named SPEOS is used to evaluate the optical performance of the LCD product. Since the optical simulation uses the random ray tracing technique, numerical noise may possibly be included in the simulation process. To solve the problem caused by numerical noise, the PQRSM which can stably find the solution of the noise problem is used in this research.

  • PDF

Optimization of a Centrifugal Compressor Impeller(I): Shape Parameters and Design Variables (원심압축기 최적화를 위한 연구(I): 형상변수 및 설계변수에 관한 연구)

  • Choi, Hyoung-Jun;Park, Young-Ha;Ahn, Kook-Young;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.424-432
    • /
    • 2011
  • Shape parameters and design variables for a centrifugal compressor impeller were investigated for optimizing a centrifugal compressor. In order to compare the performance of an optimized impeller with the performance of the original impeller, an already tested impeller was chosen and design variables for optimization were selected. The meridional shapes at the shroud and at the hub were re-designed using the Bezier curve. The camber-lines of the impeller blade at the hub and at the tip were also expressed by the Bezier curve. The shape curves for impeller could be expressed using 6-8 control points. Among them, eight control points which have strong effect to the shape can be selected as design variables for optimization. Therefore, any impeller which is expressed by data points for its shape can be optimized using few design variables.

Genetic Algorithm based Methodology for Network Performance Optimization (유전자 알고리즘을 이용한 WDM 네트워크 최적화 방법)

  • Yang, Hyo-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.39-45
    • /
    • 2008
  • This paper considers the multi-objective optimization of a multi-service arrayed waveguide grating-based single-hop WDM network with the two conflicting objectives of maximizing throughput while minimizing delay. This paper presents a genetic algorithm based methodology for finding the optimal throughput-delay tradeoff curve, the so-called Pareto-optimal frontier. Genetic algorithm based methodology provides the network architecture parameters and the Medium Access Control protocol parameters that achieve the Pareto-optima in a computationally efficient manner. The numerical results obtained with this methodology provide the Pareto-optimal network planning and operation solution for a wide range of traffic scenarios. The presented methodology is applicable to other networks with a similar throughput-delay tradeoff.

  • PDF

An Experimental Study on the Performance Improvement of the Seasonal Energy Efficiency Ratio(SEER) of a Heat Pump by Optimizing Operating Parameters under Partial Load Conditions (부분부하 조건에서 히트펌프의 운전변수 최적화를 통한 냉방계절성능(SEER) 향상에 관한 실험적 연구)

  • Choi, Sungkyung;Lee, Sang Hun;Kim, Sunjae;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.111-118
    • /
    • 2017
  • Performance factors such as the EER(Energy Efficiency Ratio) and the COP (Coefficient of Performance) are being replaced by seasonal energy efficiency factors, like the SEER (Seasonal EER) and the SCOP (Seasonal COP) to evaluate the performance of a heat pump by the time of the year. Seasonal performance factors, such as the CSPF (Cooling Seasonal Performance Factor) and the HSPF (Heating Seasonal Performance Factor) are used to describe the heat pump's performance during the cool and hot seasons. In this study, the optimization of all heat pump's operating parameters was experimentally conducted to enhance the SEER based on the EU standard (EN 14825). Moreover, the SEER was improved by the compressor frequency, as well as indoor and outdoor fan speeds. In addition, the performance characteristics of the heat pump were studied under partial load conditions. As a result, the SEER was enhanced by 17% when the compressor frequency was optimized. An additional 2% improvement was achievable with the optimization of indoor and outdoor fan speeds.

Optimal Design of a Novel Knee Orthosis using a Genetic Algorism (유전자 알고리즘을 이용한 새로운 무릎 보장구의 최적 설계)

  • Pyo, Sang-Hun;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1021-1028
    • /
    • 2011
  • The objective of this paper is to optimize the design parameters of a novel mechanism for a robotic knee orthosis. The feature of the proposed knee othosis is to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The quadriceps device operates in five-bar links with 2-DOF motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking. However, the proposed orthosis must use additional linkages than a simple four-bar mechanism. To maximize the benefit of reducing the actuators power by using the developed kinematic design, it is necessary to minimize total weight of the device, while keeping necessary actuator performances of torques and angular velocities for support. In this paper, we use a SGA (Simple Genetic Algorithm) to minimize sum of total link lengths and motor power by reducing the weight of the novel knee orthosis. To find feasible parameters, kinematic constraints of the hamstring and quadriceps mechanisms have been applied to the algorithm. The proposed optimization scheme could reduce sum of total link lengths to half of the initial value. The proposed optimization scheme can be applied to reduce total weight of general multi-linkages while keeping necessary actuator specifications.

Optimization of Fan-Shaped Hole for Gas Turbine Blade on Thin Wall (가스터빈 블레이드의 얇은 벽에서의 팬 형상 홀 최적화)

  • Hyun, Minjoo;Park, Hee Seung;Kim, Taehyun;Song, Ho Seop;Lee, Hee Jae;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.71-77
    • /
    • 2021
  • Several cooling techinques have been studied for protecting gas turbine blades from hot gas. In terms of film-cooling techniques, various shapes of film cooling holes have been studied including fan shaped holes, which are used on gas turbine blades. However, owing to increasing demands on smaller gas turbines, a research on film-cooling holes on thin walls is required. This study was conducted at blowing ratios of 1 and 2, using numerical analysis. Through the numerical analysis, the effect of geometrical parameters on the effectiveness of fan-shaped hole film cooling was studied. Moreover, optimization was performed on three geometrical parameters: metering length, lateral expansion angle and forward expansion angle. As a result, we realized that the optimal fan-shaped holes on each blowing ratio were found to have very similar geometry and cooling performance.