• Title/Summary/Keyword: Parameters Optimization

Search Result 3,253, Processing Time 0.029 seconds

Optimization of Design Parameters of a EPPR Valve Solenoid using Artificial Neural Network (인공 신경회로망을 이용한 전자비례 감압밸브의 솔레노이드 형상 최적화)

  • Yoon, Ju Ho;Nguyen, Minh Nhat;Lee, Hyun Su;Youn, Jang Won;Kim, Dang Ju;Lee, Dong Won;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.34-41
    • /
    • 2016
  • Unlike the commonly used On/Off solenoid, constant attraction force which is independent of plunger displacement is a considerably important characteristic to proportional solenoid of the EPPR Valve. Attraction force uniformity is mainly affected by the internal shape design parameters. Due to a number of shape design parameters, the optimal parameter values are very complex and time consuming to find by trial and error method. Much research has been conducted or are still in progress to find the optimal parameter values by applying various optimization techniques like Genetic Algorithm, Evolution Strategy, Simulated Annealing, or the Taguchi method. In this paper, the design parameters which have primary effects on the attraction force uniformity and the average attraction force are decided by main effects analysis of Design of Experiments. Optimal parameter values are derived using finite-element analysis and a neural network model.

Estimating Organ Doses from Pediatric Cerebral Computed Tomography Using the WAZA-ARI Web-Based Calculator

  • Etani, Reo;Yoshitake, Takayasu;Kai, Michiaki
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Background: The use of computed tomography (CT) device has increased in the past few decades in Japan. Dose optimization is strongly required in pediatric CT examinations, since there is concern that an unreasonably excessive medical radiation exposure might increase the risk of brain cancer and leukemia. To accelerate the process of dose optimization, continual assessment of the dose levels in actual hospitals and medical facilities is necessary. This study presents organ dose estimation using pediatric cerebral CT scans in the Kyushu region, Japan in 2012 and the web-based calculator, WAZA-ARI (https://waza-ari.nirs.qst.go.jp). Materials and Methods: We collected actual patient information and CT scan parameters from hospitals and medical facilities with more than 200 beds that perform pediatric CT in the Kyushu region, Japan through a questionnaire survey. To estimate the actual organ dose (brain dose, bone marrow dose, thyroid dose, lens dose), we divided the pediatric population into five age groups (0, 1, 5, 10, 15) based on body size, and inputted CT scan parameters into WAZA-ARI. Results and Discussion: Organ doses for each age group were obtained using WAZA-ARI. The brain dose, thyroid dose, and lens dose were the highest in the Age 0 group among the age groups, and the bone marrow and thyroid doses tended to decrease with increasing age groups. All organ doses showed differences among facilities, and this tendency was remarkable in the young group, especially in the Age 0 group. This study confirmed a difference of more than 10-fold in organ doses depending on the facility and CT scan parameters, even when the same CT device was used in the same age group. Conclusion: This study indicated that organ doses varied widely by age group, and also suggested that CT scan parameters are not optimized for children in some hospitals and medical facilities.

A Study on Efficient Signing Methods and Optimal Parameters Proposal for SeaSign Implementation (SeaSign에 대한 효율적인 서명 방법 및 최적 파라미터 제안 연구)

  • Suhri Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.167-177
    • /
    • 2024
  • This paper proposes optimization techniques for SeaSign, an isogeny-based digital signature algorithm. SeaSign combines class group actions of CSIDH with the Fiat-Shamir with abort. While CSIDH-based algorithms have regained attention due to polynomial time attacks for SIDH-based algorithms, SeaSiogn has not undergone significat optimization because of its inefficiency. In this paper, an efficient signing method for SeaSign is proposed. The proposed signing method is simple yet powerful, achived by repositioning the rejection sampling within the algorithm. Additionally, this paper presnts parameters that can provide optimal performance for the proposed algorithm. As a result, by using the original parameters of SeaSign, the proposed method is three times faster than the original SeaSign. Additonally, combining the newly suggested parameters with the signing method proposed in this paper yields a performance that is 290 times faster than the original SeaSign and 7.47 times faster than the method proposed by Decru et al.

A Study on the Improvement of Noise Performance by Optimizing Machining Process Parameters on Ball Screw (가공최적화를 통한 볼 스크류의 소음성능 향상에 관한 연구)

  • Xu, Zhezhu;Choi, Jong-Hun;Kim, Hyun-Ku;Shin, Joong-Ho;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.54-61
    • /
    • 2011
  • Ball screw systems are largely used in industry for motion control and motor applications. But the problem of noise, which really perplexes us, is highly correlated with the quality in ball screw systems all the way. In this paper, machining process parameters were evaluated in respects of technique, business, produce and quality to verify which impact influences the noise most. In order to adjust and compare, two comparison groups were set with the present parameters bench mark. Different ball screws were produced as specimens for the noise tests. Through comparing the noise performance of different parameters in the machining process respectively, a group of optimized machining process parameters were obtained. Another noise test was proceeded to know how noise performance was improved by optimizing the machining process parameters. At last, surface roughness tests have been done to know how surface roughness improved by optimization. The improvement of surface roughness is the main factor influences the noise performances.

The Improvement of Summer Season Precipitation Predictability by Optimizing the Parameters in Cumulus Parameterization Using Micro-Genetic Algorithm (마이크로 유전알고리즘을 이용한 적운물리과정 모수 최적화에 따른 여름철 강수예측성능 개선)

  • Jang, Ji-Yeon;Lee, Yong Hee;Choi, Hyun-Joo
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.335-346
    • /
    • 2020
  • Three free parameters included in a cumulus parameterization are optimized by using micro-genetic algorithm for three precipitation cases occurred in the Korea Peninsula during the summer season in order to reduce biases in a regional model associated with the uncertainties of the parameters and thus to improve the predictability of precipitation. The first parameter is the one that determines the threshold in convective trigger condition. The second parameter is the one that determines boundary layer forcing in convective closure. Finally, the third parameter is the one used in calculating conversion parameter determining the fraction of condensate converted to convective precipitation. Optimized parameters reduce the occurrence of convections by suppressing the trigger of convection. The reduced convection occurrence decreases light precipitation but increases heavy precipitation. The sensitivity experiments are conducted to examine the effects of the optimized parameters on the predictability of precipitation. The predictability of precipitation is the best when the three optimized parameters are applied to the parameterization at the same time. The first parameter most dominantly affects the predictability of precipitation. Short-range forecasts for July 2018 are also conducted to statistically assess the precipitation predictability. It is found that the predictability of precipitation is consistently improved with the optimized parameters.

Modeling and multiple performance optimization of ultrasonic micro-hole machining of PCD using fuzzy logic and taguchi quality loss function

  • Kumar, Vinod;kumari, Neelam
    • Advances in materials Research
    • /
    • v.1 no.2
    • /
    • pp.129-146
    • /
    • 2012
  • Polycrystalline diamond is an ideal material for parts with micro-holes and has been widely used as dies and cutting tools in automotive, aerospace and woodworking industries due to its superior wear and corrosion resistance. In this research paper, the modeling and simultaneous optimization of multiple performance characteristics such as material removal rate and surface roughness of polycrystalline diamond (PCD) with ultrasonic machining process has been presented. The fuzzy logic and taguchi's quality loss function has been used. In recent years, fuzzy logic has been used in manufacturing engineering for modeling and monitoring. Also the effect of controllable machining parameters like type of abrasive slurry, their size and concentration, nature of tool material and the power rating of the machine has been determined by applying the single objective and multi-objective optimization techniques. The analysis of results has been done using the MATLAB 7.5 software and results obtained are validated by conducting the confirmation experiments. The results show the considerable improvement in S/N ratio as compared to initial cutting conditions. The surface roughness of machined surface has been measured by using the Perthometer (M4Pi, Mahr Germany).

Swing Trajectory Optimization of Legged Robot by Real-Time Nonlinear Programming (실시간 비선형 최적화 알고리즘을 이용한 족형 로봇의 Swing 궤적 최적화 방법)

  • Park, Kyeongduk;Choi, Jungsu;Kong, Kyoungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1193-1200
    • /
    • 2015
  • An effective swing trajectory of legged robots is different from the swing trajectories of humans or animals because of different dynamic characteristics. Therefore, it is important to find optimal parameters through experiments. This paper proposes a real-time nonlinear programming (RTNLP) method for optimization of the swing trajectory of the legged robot. For parameterization of the trajectory, the swing trajectory is approximated to parabolic and cubic spline curves. The robotic leg is position-controlled by a high-gain controller, and a cost function is selected such that the sum of the motor inputs and tracking errors at each joint is minimized. A simplified dynamic model is used to simulate the dynamics of a robotic leg. The purpose of the simulation is to find the feasibility of the optimization problem before an actual experiment occurs. Finally, an experiment is carried out on a real robotic leg with two degrees of freedom. For both the simulation and the experiment, the design variables converge to a feasible point, reducing the cost value.

Performance Optimization Considering I/O Data Coherency in Stream Processing (Stream Processing에서 I/O데이터 일관성을 고려한 성능 최적화)

  • Na, Hana;Yi, Joonwhan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.59-65
    • /
    • 2016
  • Performance optimization of applications with massive stream data processing has been performed by considering I/O data coherency problem where a memory is shared between processors and hardware accelerators. A formula for performance analyses is derived based on profiling results of system-level simulations. Our experimental results show that overall performance was improved by 1.40 times on average for various image sizes. Also, further optimization has been performed based on the parameters appeared in the derived formula. The final performance gain was 3.88 times comparing to the original design and we can find that the performance of the design with cacheable shared memory is not always.

Intelligent Clustering in Vehicular ad hoc Networks

  • Aadil, Farhan;Khan, Salabat;Bajwa, Khalid Bashir;Khan, Muhammad Fahad;Ali, Asad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3512-3528
    • /
    • 2016
  • A network with high mobility nodes or vehicles is vehicular ad hoc Network (VANET). For improvement in communication efficiency of VANET, many techniques have been proposed; one of these techniques is vehicular node clustering. Cluster nodes (CNs) and Cluster Heads (CHs) are elected or selected in the process of clustering. The longer the lifetime of clusters and the lesser the number of CHs attributes to efficient networking in VANETs. In this paper, a novel Clustering algorithm is proposed based on Ant Colony Optimization (ACO) for VANET named ACONET. This algorithm forms optimized clusters to offer robust communication for VANETs. For optimized clustering, parameters of transmission range, direction, speed of the nodes and load balance factor (LBF) are considered. The ACONET is compared empirically with state of the art methods, including Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO) based clustering techniques. An extensive set of experiments is performed by varying the grid size of the network, the transmission range of nodes, and total number of nodes in network to evaluate the effectiveness of the algorithms in comparison. The results indicate that the ACONET has significantly outperformed the competitors.

Design Optimization of Double-array Bolted Joints in Cylindrical Composite Structures

  • Kim, Myungjun;Kim, Yongha;Kim, Pyeunghwa;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.332-340
    • /
    • 2016
  • A design optimization is performed for the double-bolted joint in cylindrical composite structures by using a simplified analytical method. This method uses failure criteria for the major failure modes of the bolted composite joint. For the double-bolted joint with a zigzag arrangement, it is necessary to consider an interaction effect between the bolt arrays. This paper proposes another failure mode which is determined by angle and distance between two bolts in different arrays and define a failure criterion for the failure mode. The optimal design for the double-bolted joint is carried out by considering the interactive net-tension failure mode. The genetic algorithm (GA) is adopted to determine the optimized parameters; bolt spacing, edge distance, and stacking sequence of the composite laminate. A purpose of the design optimization is to maximize the burst pressure of the cylindrical structures by ensuring structural integrity. Also, a progressive failure analysis (PFA) is performed to verify the results of the optimal design for the double-bolted joint. In PFA, Hashin 3D failure criterion is used to determine the ply that would fail. A stiffness reduction model is then used to reduce the stiffness of the failed ply for the corresponding failure mode.