• Title/Summary/Keyword: Parameters Optimization

Search Result 3,253, Processing Time 0.031 seconds

Multiresponse Optimization Using a Response Surface Approach to Taguchi′s Parameter Design (다구찌의 파라미터 설계에 대한 반응표면 접근방법을 이용한 다반응 최적화)

  • 이우선;이종협;임성수
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.1
    • /
    • pp.165-194
    • /
    • 1999
  • Taguchi's parameter design seeks proper choice of levels of controllable factors (Parameters in Taguchi's terminology) that makes the qualify characteristic of a product optimal while making its variability small. This aim can be achieved by response surface techniques that allow flexibility in modeling and analysis. In this article, a collection of response surface modeling and analysis techniques is proposed to deal with the multiresponse optimization problem in experimentation with Taguchi's signal and noise factors.

  • PDF

Crystal Geometry Optimization of β-Lactam Antibiotics Using MMFF Parameters

  • 원영도
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.944-952
    • /
    • 1995
  • A generic force field approach has been applied to geometry optimization of penam and cephem crystals. The crystalline state energy and force evaluation with the universal force field (MMFF: Merck Molecular Force Field) results in good agreements with the crystallographic data. Bond lengths are usually correct to within 0.02 Å and bond angles usually to within 2.5°. The conformation of the β-lactam bicyclic rings in the crystal environment is also well reproduced. The results thus demonstrate the applicability of MMFF to modeling of newer molecular constructs in condensed phase.

Effects of the Welding Parameters on the Weld Shape in Nd:YAG Laser Welding of STS 304L (STS 304L의 Nd:YAG 레이저 용접에서 용접조건이 용접부 형상에 미치는 영향)

  • 이형근;석한길;한현수;박울재;홍순복
    • Journal of Welding and Joining
    • /
    • v.22 no.1
    • /
    • pp.58-64
    • /
    • 2004
  • The control of the weld bead shape is important in laser welding of the small parts. The effects of laser welding parameters on the weld bead shape in the pulsed Nd:YAG laser welding of STS 304L material were investigated. Shielding gas type, flow rate, pumping voltage, pulse frequency, pulse width, focal position and overlap distance were selected as laser welding parameters. Experiments were designed and conducted using the Taguchi method which was a statistical experimental method. The weld bead width, penetration, area and aspect ratio were measured and analysed as the weld bead shape properties and the welding parameters were optimized to maximize the weld aspect ratio. Weld aspect ratio were greatly affected by the pulse width, pumping voltage and pulse frequency, and somewhat by the overlap distance, and little by the shielding gas type, flow rate and focal position. A confirmation experiment were conducted using the optimized welding parameters.

Analytical design of constraint handling optimal two parameter internal model control for dead-time processes

  • Tchamna, Rodrigue;Qyyum, Muhammad Abdul;Zahoor, Muhammad;Kamga, Camille;Kwok, Ezra;Lee, Moonyong
    • Korean Journal of Chemical Engineering
    • /
    • v.36 no.3
    • /
    • pp.356-367
    • /
    • 2019
  • This work presents an advanced and systematic approach to analytically design the optimal parameters of a two parameter second-order internal model control (IMC) filter that satisfies operational constraints on the output process, the manipulated variable as well as rate of change of the manipulated variable, for a first-order plus dead time (FOPDT) process. The IMC parameters are designed to minimize a control objective function composed of the weighted sum of the error between the process variable and the set point, and the rate of change of the manipulated variable, and to satisfy the desired constraints. The feasible region of the constrained IMC control parameters was graphically analyzed, as the process parameters and the constraints varied. The resulting constrained IMC control parameters were also used to find the corresponding industrial proportional-integral controller parameters of a Smith predictor structure.

Integrated Optimization Design of Carbon Fiber Composite Framework for Small Lightweight Space Camera

  • Yang, Shuai;Sha, Wei;Chen, Changzheng;Zhang, Xingxiang;Ren, Jianyue
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.389-395
    • /
    • 2016
  • A Carbon Fiber Composite (CFC) framework was designed for a small lightweight space camera. According to the distribution characteristics of each optical element in the optical system, CFC (M40J) was chosen to accomplish the design of the framework. TC4 embedded parts were used to solve the low accuracy of the CFC framework interface problem. An integrated optimization method and the optimization strategy which combined a genetic global optimization algorithm with a downhill simplex local optimization algorithm were adopted to optimize the structure parameters of the framework. After optimization, the total weight of the CFC framework and the TC4 embedded parts is 15.6 kg, accounting for only 18.4% that of the camera. The first order frequency of the camera reaches 104.8 Hz. Finally, a mechanical environment test was performed, and the result demonstrates that the first order frequency of the camera is 102 Hz, which is consistent with the simulation result. It further verifies the rationality and correctness of the optimization result. The integrated optimization method mentioned in this paper can be applied to the structure design of other space cameras, which can greatly improve the structure design efficiency.