• Title/Summary/Keyword: Parameters Optimization

Search Result 3,253, Processing Time 0.032 seconds

Structural Optimization using Reliability Analysis (신뢰성 해석을 이용한 구조최적화)

  • Park, Jae-Yong;Lim, Min-Kyu;Oh, Young-Kyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.224-229
    • /
    • 2010
  • This paper presents a reliability-based topology optimization (RBTO) using bi-directional evolutionary structural optimization (BESO). An actual design involves uncertain conditions such as material property, operational load and dimensional variation. Deterministic topology optimization (DTO) is obtained without considering of uncertainties related to the uncertainty parameters. However, the RBTO can consider the uncertainty variables because it has the probabilistic constraints. In this paper, the reliability index approach (RIA) is adopted to evaluate the probabilistic constraint. RBTO based on BESO starting from various design domains produces a similar optimal topology each other. Numerical examples are presented to compare the DTO with the RBTO.

Dolphin Echolocation Optimization: Continuous search space

  • Kaveh, A.;Farhoudi, N.
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Nature has provided inspiration for most of the man-made technologies. Scientists believe that dolphins are the second to humans in smartness and intelligence. Echolocation is the biological sonar used by dolphins for navigation and hunting in various environments. This ability of dolphins is mimicked in this paper to develop a new optimization method. Dolphin Echolocation Optimization (DEO) is an optimization method based on dolphin's approach for hunting food and exploration of environment. DEO has already been developed for discrete optimization search space and here it is extended to continuous search space. DEO has simple rules and is adjustable for predetermined computational cost. DEO provides the optimum results and leads to alternative optimality curves suitable for the problem. This algorithm has a few parameters and it is applicable to a wide range of problems like other metaheuristic algorithms. In the present work, the efficiency of this approach is demonstrated using standard benchmark problems.

Surrogate-Based Improvement on Cuckoo Search for Global Constrained Optimization (근사 최적화를 활용한 뻐꾸기 탐색법의 성능 개선)

  • Lee, Se Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.3
    • /
    • pp.245-252
    • /
    • 2014
  • Engineering applications of global optimization techniques are recently abundant in the literature and it may be caused by both new methodologies arising and faster computers coming out. Many of the optimization techniques are based on natural or biological phenomena. This study put focus on enhancing the performace of Cuckoo Search (CS) among them since it has the least number of parameters to tune. The proposed enhancement can be achieved by applying surrogate-based optimization at every cycle of CS, which fortifies the exploitation capability of the original method. The enhanced algorithm has been applied several engineering design problems with constraints. The proposed method shows comparable or superior performance to the original method.

An optimization framework of a parametric Octabuoy semi-submersible design

  • Xie, Zhitian;Falzarano, Jeffrey
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.711-722
    • /
    • 2020
  • An optimization framework using genetic algorithms has been developed towards an automated parametric optimization of the Octabuoy semi-submersible design. Compared with deep draft production units, the design of the shallow draught Octabuoy semi-submersible provides a floating system with improved motion characteristics, being less susceptible to vortex induced motions in loop currents. The relatively large water plane area results in a decreased natural heave period, which locates the floater in the wave period range with more wave energy. Considering this, the hull design of Octabuoy semi-submersible has been optimized to improve the floater's motion performance. The optimization has been conducted with optimized parameters of the pontoon's rectangular cross section area, the cone shaped section's height and diameter. Through numerical evaluations of both the 1st-order and 2nd-order hydrodynamics, the optimization through genetic algorithms has been proven to provide improved hydrodynamic performance, in terms of heave and pitch motions. This work presents a meaningful framework as a reference in the process of floating system's design.

New explicit formulas for optimum design of concrete gravity dams

  • Habibi, Alireza;Zarei, Sajad;Khaledy, Nima
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.143-152
    • /
    • 2021
  • Large dams are a part of the infrastructure of any society, and a huge amount of resources are consumed to build them. Among the various types of dams, the optimum design of concrete gravity dams requires special attention because these types of dams require a huge amount of concrete for their construction. On the other hand, concrete gravity dams are among the structures whose design, regarding the acting forces, geometric parameters, and resistance and stability criteria, has some complexities. In the present study, an optimization methodology is proposed based on Sequential Quadratic Programming (SQP), and a computer program is developed to perform optimization of concrete gravity dams. The optimum results for 45 concrete gravity dams are studied and regression analyses are performed to obtain some explicit formulas for optimization of the gravity dams. The optimization of concrete gravity dams can be provided easily using the developed formulas, without the need to perform any more optimization process.

Numerical Simulation of the Flat Die for Shape Optimization in the Single-screw Extrusion Process

  • Joon Ho Moon;See Jo Kim
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.147-156
    • /
    • 2022
  • In this study, we chose a flat die to optimize a general die geometry. The optimization was aimed at obtaining a uniform velocity distribution across the exit of the die. For the optimization, the input and output design parameters were randomly computed, and response surfaces were generated to obtain statistical data for the minimum and maximum sensitivities computed during optimization. Subsequently, object functions with constraints were numerically computed to obtain the minimum errors in the velocity difference (i.e., variable "Outp" in this study). Finally, we obtained the candidate optimized dataset. Note that the current numerical computations were simultaneously conducted for an entire extruder, i.e., screw plus die. The numerical outlet velocity distributions in the modified die geometry tended to be much more uniform than the conventional distributions in the current optimization processes for this specific flat die.

Optimal Design of Water Distribution Networks using the Genetic Algorithms:(II) -Sensitivity Analysis- (Genetic Algorithm을 이용한 상수관망의 최적설계: (II) -민감도 분석을 중심으로-)

  • Shin, Hyun-Gon;Park, Heekyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.50-58
    • /
    • 1998
  • Genetic Algorithm (GA) consists of selection, reproduction, crossover and mutation processes and many parameters including population size, generation number, the probability of crossover (Pc) and the probability of mutation (Pm). Determining values of the parameters is found critical in the whole optimization process and a sensitivity analysis with them seems mandatory. This paper tries to demonstrate such importance of sensitivity analysis of GA using an example water supply tunnel network of the New York City. For optimization of the network with GA, Pc and Pm vary from 0.5 to 0.9 by an increment of 0.1 and from 0.01 to 0.05 by an increment of 0.01, respectively, while fixing both the population size and the generation number to 100. This sensitivity analysis results in an optimum design of 22.3879 million dollars at the values of 0.8 and 0.01 for Pc and Pm, respectively. In addition, the probability of recombination (Pr) is introduced to check its applicability in the GA optimization of water distribution network. When Pr is 0.05 with the same values of Pc and Pm as above, the optimum design costs 20.9077 million dollars. This is lower than the cost of 22.3879 million dollars for the case of not using Pr by 6.6%. These results indicate that conducting a sensitivity analysis with parameter values and using Pr are useful in the optimization of WDN.

  • PDF

Optimal design of Base Isolation System considering uncertain bounded system parameters

  • Roy, Bijan Kumar;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.19-37
    • /
    • 2013
  • The optimum design of base isolation system considering model parameter uncertainty is usually performed by using the unconditional response of structure obtained by the total probability theory, as the performance index. Though, the probabilistic approach is powerful, it cannot be applied when the maximum possible ranges of variations are known and can be only modelled as uncertain but bounded type. In such cases, the interval analysis method is a viable alternative. The present study focuses on the bounded optimization of base isolation system to mitigate the seismic vibration effect of structures characterized by bounded type system parameters. With this intention in view, the conditional stochastic response quantities are obtained in random vibration framework using the state space formulation. Subsequently, with the aid of matrix perturbation theory using first order Taylor series expansion of dynamic response function and its interval extension, the vibration control problem is transformed to appropriate deterministic optimization problems correspond to a lower bound and upper bound optimum solutions. A lead rubber bearing isolating a multi-storeyed building frame is considered for numerical study to elucidate the proposed bounded optimization procedure and the optimum performance of the isolation system.

Parameter Identification of Robot Hand Tracking Model Using Optimization (최적화 기법을 이용한 로봇핸드 트래킹 모델의 파라미터 추정)

  • Lee, Jong-Kwang;Lee, Hyo-Jik;Yoon, Kwang-Ho;Park, Byung-Suk;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.467-473
    • /
    • 2007
  • In this paper, we present a position-based robot hand tracking scheme where a pan-tilt camera is controlled such that a robot hand is always shown in the center of an image frame. We calculate the rotation angles of a pan-tilt camera by transforming the coordinate systems. In order to identify the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. From the simulation results, it is shown that the considered parameter identification problem is characterized by a highly multimodal landscape; thus, a global optimization technique such as a particle swarm optimization could be a promising tool to identify the model parameters of a robot hand tracking system, whereas the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum.

Prediction and optimization of thinning in automotive sealing cover using Genetic Algorithm

  • Kakandikar, Ganesh M.;Nandedkar, Vilas M.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • Deep drawing is a forming process in which a blank of sheet metal is radially drawn into a forming die by the mechanical action of a punch and converted to required shape. Deep drawing involves complex material flow conditions and force distributions. Radial drawing stresses and tangential compressive stresses are induced in flange region due to the material retention property. These compressive stresses result in wrinkling phenomenon in flange region. Normally blank holder is applied for restricting wrinkles. Tensile stresses in radial direction initiate thinning in the wall region of cup. The thinning results into cracking or fracture. The finite element method is widely applied worldwide to simulate the deep drawing process. For real-life simulations of deep drawing process an accurate numerical model, as well as an accurate description of material behavior and contact conditions, is necessary. The finite element method is a powerful tool to predict material thinning deformations before prototypes are made. The proposed innovative methodology combines two techniques for prediction and optimization of thinning in automotive sealing cover. Taguchi design of experiments and analysis of variance has been applied to analyze the influencing process parameters on Thinning. Mathematical relations have been developed to correlate input process parameters and Thinning. Optimization problem has been formulated for thinning and Genetic Algorithm has been applied for optimization. Experimental validation of results proves the applicability of newly proposed approach. The optimized component when manufactured is observed to be safe, no thinning or fracture is observed.